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1.	 Introduction

Large language models (LLMs) are advanced AI 
models trained on extensive textual data to generate 
human-like language, significantly enhancing natural 
language processing tasks. Notable examples, like Ope-
nAI’s GPT-41) feature user-friendly application program-
ming interfaces (APIs), driving their widespread use in 
context-aware chatbots, real-time language translation, 
and efficient text summarization. This has led to en-
hanced user experiences across diverse industries.

 LLMs like GPT-4 cannot answer queries about infor-
mation in proprietary enterprise data because the LLM 
was not trained on this data. However, when LLMs are 
made aware of proprietary enterprise data, they can 
generate responses that use industry-specific jargon, 
processes, and context. This results in more accurate 
and relevant responses for enterprises. 

Fine-tuning and Retrieval-Augmented Generation 
(RAG)2) are two prominent methods employed to make 
LLMs aware of enterprise data. Fine-tuning changes 
the model weights of an LLM to adapt the model to do-
main-specific nuances. In contrast, RAG leverages pre-

trained model (without any modifications) in conjunction 
with a retriever that selects relevant information (con-
text) from enterprise data and incorporates this external 
knowledge in prompts to LLMs. In this paper, we use a 
RAG approach to make LLMs aware of enterprise data.

The cost of LLM API usage can add up very quickly, 
especially when incorporating enterprise information in 
prompts to LLMs. Cost depends on the number of tokens 
in the prompt and the LLM response. In GPT-3 LLM, a 
token is approximately 4 characters3) but this varies 
across LLMs and languages. 

As an illustration of the high costs of LLM API usage, 
consider a service with 15,000 visitors where every vis-
itor sends 3 requests twice a week. A (representative) 
prompt has about 1800 prompt tokens and 80 output 
tokens4). Cost of GPT-4 API usage for a month works out 
to $21,200 (pricing of $0.03/1K tokens for the prompt, 
and $0.06/1K tokens for the generated output).

In this article, we focus on reducing the costs of LLM 
API usage in scenarios where use of enterprise data 
generates more useful responses. We propose Lean-
Context, a novel cost-efficient, query-aware enterprise 
data context retrieval system. The retrieved context is 
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compact, and highly relevant to answer the query. Our 
experimental results show that LeanContext (a) reduces 
the cost of LLM API usage (by 37% to 68% compared 
to RAG context), while maintaining high accuracy of 
responses, and (b) improves accuracy of responses (by 
26% to 38%) when notable summarizers reduce RAG 
context. 

2.	 Retrieval augmented generation

Fig. 1 shows the traditional retrieval augmented gen-
eration method. It consists of two distinct parts, that 
can operate in parallel: enterprise data ingestion, and 
query-response.
Enterprise data ingestion: Enterprise text documents 
are split into small chunks by a text splitter (a chunk 
is a set of consecutive sentences in an enterprise doc-
ument). An embedding generator embeds each chunk 
in an n-dimensional vector, where n is pre-determined. 
These vectors, and the corresponding chunks, are stored 
in a vector database. Storing the chunks as vectors 
makes it easy to find enterprise data that is relevant to 
a given user query. 
Query-response: A user query is also embedded in 
an n-dimensional vector. As shown in Fig. 1, a semantic 
search method determines the N vectors in the vector 
database that are most like the user query vector. Here, 
N is a pre-determined parameter. The chunks that corre-
spond to these N vectors are the relevant RAG context. 
This context is combined with the user query to con-
struct the prompt and the response from the LLM is pro-
vided to the user. The size of the prompt cannot exceed 
the max-token limit of the LLM API (this limit can vary 
across different LLMs). 

3.	 LeanContext 

We make two critical observations that are key to 

the design of LeanContext. First, experiments on re-
al-world applications show that not all information in 
the N chunks of context retrieved by a traditional RAG is 
necessary for an LLM to generate an accurate response. 
Second, the specific information in the RAG context that 
can be omitted depends on the user query. LeanContext 
leverages these insights to construct a more compact 
reduced context from the RAG context. The reduced 
context directly leads to lower LLM API usage costs. 
Also, the reduced context results in an LLM response 
that is just as accurate as the LLM response for a prompt 
that uses the larger (N chunks of) RAG context. 

Fig. 2 shows the system overview of LeanContext. We 
use the traditional RAG method to retrieve the N chunks 
of enterprise data context. Then, we rank the sentences 
in this RAG context based on their relevance to the user 
query. A novel reinforcement learning algorithm (de-
scribed in section 3.1) determines the top-k sentences 
in the ranked RAG context that should be considered 
to construct the reduced context. Our reinforcement 
learning algorithm determines the value of k based on 
the user query and the RAG context. Then, the import-
ant top-k sentences are left intact but the rest of the 
less important sentences in the ranked RAG context are 
further compressed using phrase deletion or summa-
rization. The top-k sentences and the compressed less 
important sentences are now combined to create the 
reduced context, as described in section 3.2. 

3.1 Reinforcement learning to compute k

Given a user query, and the corresponding RAG con-
text, our novel lightweight Q-learning-based reinforce-
ment learning (RL) algorithm computes a good k for this 
pair. We briefly describe the state, action and reward 
components of our RL algorithm.
State: We create an embedding vector for the RAG con-
text of N chunks. Then, we derive a difference vector by Fig. 1 Retrieval augmented generation.

Fig. 2 System overview of LeanContext.
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subtracting the query embedding vector (vq) from the 
RAG context embedding vector (vC). We construct differ-
ence vectors for many query-context pairs and cluster 
these vectors to compute centroids (we use K-Means 
clustering algorithm). These centroids are our state vec-
tors . 

The variables i and j are used to index the different RAG 
contexts and user queries, respectively. 
Action: An action corresponds to a specific fraction of 
the total sentences in the ranked RAG context. An action 
can be any value from 0 to 0.4, each spaced 0.05 apart. 
For example, if an action assumes the maximum value 
of 0.4, then 40% of the total number of sentences in the 
ranked RAG context will be considered as top-k sentenc-
es that are most similar to the query. The k in top-k is 
derived as the product of the current action value and 
the total number of sentences in the ranked RAG con-
text.
Reward: Given a value for action, we can determine the 
top-k sentences and their token count. We define token 
ratio ( )  as the ratio of the token counts of top-k sen-
tences in reduced context and the all the sentences in 
the ranked RAG context. The lower the token ratio, the 
smaller the top-k context length. However, the accuracy 
of the LLM response for the top-k reduced context must 
be comparable to the accuracy of LLM response for the 
full RAG context. We use ROUGE-15) scores to compare 
the accuracies of different LLM responses (the reference 
response we use to compute the ROUGE-1 scores is de-
scribed in section 3.3). If the ROUGE score with the full 
RAG context is (r*) , and the ROUGE score for top-k con-
text is r, then the current (state, action) pair value in Q 
table will be rewarded if , otherwise it will be 
penalized. The reward function R is defined as follows.

 

Here, α controls the relative contribution of the token 

ratio and accuracy of the response to the reward value.

3.2 Reduced Context

The RL algorithm determines the query-specific value 
of k, which determines the top-k context. This context 
includes the important top-k sentences that are related 
to the query, as well as other less important sentenc-
es around the top-k sentences. Fig. 3 shows how we 
construct the Reduced Context. We leave the most rele-
vant top-k sentences intact because they are critical for 
maintaining the relevance of the context to the query. 
However, the less important sentences are individually 
compressed further using open-source text reduction 
methods6)-10). We also do not include in the reduced con-
text any sentences that are beyond the last top-k sen-
tence. 

We preserve the original order of both the top-k sen-
tences and the less important sentences in the ranked 
RAG context. By preserving the sentence order, we 
ensure the temporal coherence of the context. Such a 
holistic approach of constructing the reduced context 
ultimately results in preserving the accuracy of LLM re-
sponses, while significantly reducing the cost of LLM API 
usage. 

3.3 Results

Enterprise data: We use arXiv and BBC-News data re-
positories. They include documents published in March 
20236) which were not used to pre-train GPT-3.5-Turbo 
model. We randomly chose 25 documents from arXiv. 
They have 63 to 962 sentences, and 352 sentences per 
document on average. Similarly, we chose 100 docu-
ments from BBC News. They have 4 to 139 sentences, 
with 30 sentences per document on average.
Queries and reference responses: We generated 100 
queries for each dataset by using QAGenerationChain11), 

Fig. 3 Construction of Reduced Context.
Fig. 4 Comparison of LeanContext with methods where 

notable summarizers reduce RAG context.
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which uses full documents as context to get LLM re-
sponses that are the reference for computing ROUGE-1 
accuracy scores for RAG or LeanContext. 
Enterprise data context: We set N=4 and N=8 for the 
arXiv and BBC News, respectively. For the arXiv Dataset, 
the total number of sentences in the RAG context varied 
from 9 to 25 with an average of 15 sentences per con-
text. Similarly, for the BBC News data, the total number 
of sentences in the context varied from 18 to 34, with 
an average of 26 sentences per context (Fig. 4). 
Reduced context: For the arXiv and BBC News data, 
the distribution of top-k sentences are shown in Fig. 5 
and Fig. 6, respectively.

Table 1 compares the impact of RAG context and Re-
duced context. The accuracy (ROUGE-1 score) of LLM 
responses is similar, but the Reduced context lowers LLM 
API usage costs by 37% to 68%. 

 Compared to other notable text reduction models like 
T510), BERT9), and SC6), LeanContext reduces cost and 
improves accuracy (Fig. 4). It also boosts the accuracy 
(ROUGE-1 score) of responses when other notable sum-
marizers are used to reduce the RAG context (Table 2).

4.	 Conclusion

LeanContext is a cost-efficient query-aware context 
reduction system to mitigate the cost associated with 
LLM API usage, while maintaining high accuracy. Reduc-
tion in context also improves the inference time of LLMs. 
LeanContext can also be used effectively in conjunction 
with other notable summarizers to reduce RAG context. 

Fig. 5 Distribution of (important sentences) k for arXiv 
data.

Fig. 6 Distribution of (important sentences) k for BBC 
News data.

Table 1 Comparison of our Reduced context with
traditional RAG (Accuracy is ROUGE-1 score).

Table 2 Improving accuracy of responses when other 
notable summarizers reduce RAG context.
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