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1.	 Introduction

Computer vision is a key technology for NEC in a wide 
range of applications across health, finance, retail, mo-
bility, remote sensing and safety. Our broad aim is to 
enable a dual strategy for NEC:

·	To build defensive moats around AI businesses 
through strategically important foundational mod-
els. 

·	 To build an aggressive toolkit that accelerates and 
diversifies impact in target application domains. This 
article outlines a foundational vision-LLM architecture 

We propose a vision-LLM framework for automating development and deployment of computer vision solutions for pre-defined 
or custom-defined tasks. A foundational layer is proposed with a code-LLM AI orchestrator self-trained with reinforcement 
learning to create Python code based on its understanding of a novel user-defined task, together with APIs, documentation 
and usage notes of existing task-specific AI models. Zero-shot abilities in specific domains are obtained through foundational 
vision-language models trained at a low compute expense leveraging existing computer vision models and datasets. An en-
gine layer is proposed which comprises of several task-specific vision-language engines which can be compositionally utilized. 
An application-specific layer is proposed to improve performance in customer-specific scenarios, using novel LLM-guided data 
augmentation and question decomposition, besides standard fine-tuning tools. We demonstrate a range of applications in-
cluding visual AI assistance, visual conversation, law enforcement, mobility, medical image reasoning and remote sensing.
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to realize those aims.
Consider a typical computer vision solution, which re-

quires customized effort through a workflow resembling 
the following: 

(1)	 Customer explains their need in natural language 
or with examples. 

(2)	 An engineer writes code based on available mod-
els, libraries and literature to solve the task. 

(3)	 The deployment team tunes the solution to cus-
tomer environment. We propose a vision-LLM that 
acts as an agent who understands new tasks and 
generates appropriate code, which then invokes 
existing engines and APIs to solve the given task. 
This design thereby unifies and leverages all NEC 
know-how on computer vision to solve any pre- or 
custom-defined visual task.

A vision-LLM requires different considerations from 
a traditional LLM, since visual data is not amenable to 
long-range reasoning, self-supervision is challenging 
and alignment with language is non-trivial. Our goal is 
to develop a low-cost, self-improving, personalizable, 
sustainable and responsible vision-LLM (Fig. 1). A key 
philosophy is for our vision-LLM to achieve a high level 
of physical grounding at minimal training cost, which we 
realize through design choices such as the agent-engine 
layers, as well as the use of code-LLMs and pretrained 
computer vision models. Our vision-LLM is distinct from 
a multimodal LLM like GPT-4V1), where our layered ap-
proach is more modular and efficient.

2.	 Summary of Architecture

A summary of our architecture is shown in Fig. 2. Our 
framework is comprised of three layers. First, a founda-
tional layer with an LLM orchestrator that plans based 
on available code and documentation how to solve a 
new task. This layer also consists of domain-specific 
foundational models that are trained on very large data-

sets with zero-shot vision-language (VL) generalization 
ability. Second, an engine layer with VL models for spe-
cific tasks like image retrieval or object detection. Third, 
an application layer where tools like augmentation, de-
composition, prompting and fine-tuning are available to 
adapt to customer-specific data or usage. We posit that 
such an approach allows for both competitive differenti-
ation and market penetration.

3.	 Tech Details and Results

We outline how to realize the above architecture and 
key benchmark results.

3.1 Foundational layer

Our framework is based on an LLM orchestrator that 
generates a plan to accomplish new tasks using avail-
able tools, as well as large pre-trained domain-specific 
foundational models. 

3.1.1 Agentic Vision-LLM Orchestrator 

Solving a complex, novel task requires interleaving 
multiple steps of reasoning and perception, which must 
be composed with planning, backtracking, and sequen-
tial decisions. Such tasks are the next frontier challenge 
for intelligent systems, which we approach through foun-
dational model-driven AI agents. We propose an LLM 
orchestrator that is given access to a battery of available 
tools and pretrained models, much like a human engi-
neer. This allows the agent to solve tasks beyond the 
ability of the underlying LLM. For example, while LLMs 
may be prone to logical inconsistencies and poor arith-
metic, an LLM-driven agent can delegate logical reason-
ing to a logic engine and arithmetic to a calculator. By al-
lowing an agent to synthesize programs and invoke APIs, 

Fig. 2 Architecture of our vision-LLM. Fig. 3 Agentic Vision-LLM Orchestrator.
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we can combine arbitrary tools to solve novel tasks.
At the core of the agentic architecture (Fig. 3) is an 

LLM that acts as a planner. Given a natural language in-
struction, the goal of the planner is to write a plan that 
accomplishes the task using available tools. The plan is 
represented as a formal program that invokes the avail-
able tools. To understand what tools are available and 
how it can use those tools, the planner consults a library 
of documentation and examples. This allows the planner 
to quickly adapt when new tools are added by reading 
their documentation. In principle, anything that can be 
programmatically invoked can be used as a tool by the 
planner using the code interpreter. As a starting point, 
we provide an environment that has access to task-spe-
cific AIs and third-party APIs. The plan (represented as 
a program) is then executed in the environment to pro-
duce an answer to the query. 

A problem with frozen off-the-shelf LLMs as planners 
is that they lack experience with writing plans and can 

fail to understand nuances of tool use from documen-
tation alone.  But training an LLM to act as a planner 
requires training data, but no large-scale training data 
is available for writing programs that solve visual tasks. 
Our key insight is learning from feedback using rein-
forcement learning. We first design an environment in 
which the planner can write and execute programs. We 
provide the planner with an API through which it can in-
voke state of the art task-specific models. We then apply 
iterated reinforced self-training by using existing anno-
tations for a vision-language task (Fig. 4). For example, 
given a dataset of image v, ground truth y and query 
q, we feed q into the planner, then run the generated 
program p on the image v. We compare the result of ex-
ecuting the program  with the ground-truth y to obtain 
a coarse reward signal, then apply a reward-weighted 
behavioral cloning loss. The trained planner outperforms 
a frozen planner based on ChatGPT by as much as 10%, 
4%, and 10% on compositional variants of question an-
swering, object detection, and image-text matching.

As an example for computer vision, consider a novel 
visual task that is difficult for end-to-end systems (Fig. 
5). It can be solved by decomposition into primitive vi-
sual tasks (object detection, image-text matching) and 
logic, for which task-specific engines exist. The planner 
writes a Python program that controls the task-specific 
AIs through an API we provide to obtain necessary in-
termediate information about the image, then combines 
the acquired information with logic expressed in code to 
arrive at an answer.

Our AI orchestrator has many benefits:
·	Solves existing or novel task specifications as 

composition of available vision modules, with au-
tomatically generated Python code.

·	Planner trained with reinforcement learning for 
improved understanding of how to use available 
tools relative to a frozen planner.

·	Human feedback for self-training for improved task 
reasoning, even with very few program examples.

·	Efficient use of code-LLM with fewer parameters 
than general LLM.

·	Parameter-tuning and data augmentation can be 
automatically handled.

3.1.2 Domain Foundational VL-Model

Our architecture can incorporate any existing vision 
model, but sometimes one may not exist in our library. 
Thus, we also propose foundational VL models (FVLM) 
in specific domains trained with a large amount of data 
to easily generalize to new tasks. Our key insight is that 
many task-specific models and datasets already exist, 

Fig. 4 More capable LLM planners who applied enhanced 
self-training.

Fig. 5 An example of a generated program to solve a 
complex, novel visual task.
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which can be leveraged to train FVLM at low compute 
expense. 

Examples of domains where we develop an FVLM are 
mobility and human analysis. Our mobility FVLM is de-
veloped using several large-scale autonomous driving 
datasets, along with the outputs of several object detec-
tion, segmentation, captioning and other models applied 
to them. Our human FVLM is trained using a collection of 
datasets and models for human attribute analysis, action 
recognition and human-object interaction. Fig. 6 shows 
the overall pipeline for training our domain FVLM. Despite 
being significantly smaller in size (7B parameters), this 
new model improves performance by 0.5% compared to 
an existing closed model with 175B parameters.

3.2 Engine layer

The engine layer is comprised of a large zoo of AI 
models, standard tools such as finetuning and domain 
adaptation, together with documentation and usage 
examples, which have been developed for specific tasks 

like image retrieval, object detection, medical imaging, 
or remote sensing.

3.2.1 Vision-language retrieval

Our proposed model ROSA2) is a data-efficient neural 
network that effectively aligns image and text modali-
ties, which enables accurate image-to-text and text-to-
image retrieval. In a zero-shot evaluation benchmark 
(Fig. 7), our model outperforms the state-of-the-art by 
3% in Rank-1 text retrieval performance although com-
peting models use 30 times more compute and require 
100 times larger training datasets.

3.2.2 Open-world scene understanding

Another engine is our open-vocabulary object detector 
MOBIUS3)4) (Fig. 8), which can localize rare categories 
and objects described by free-form text descriptions. 
On a public open-vocabulary benchmark, where detec-
tors are tasked to detect unseen categories without box 
annotations during training, MOBIUS outperforms the 
competition by 4.3% average precision (AP) points.

3.3 Application layer

While our foundational and engine layers already en-
able deployment of solutions in customer domains, the 
application layer will provide tools to achieve personalized 
solutions based on target data and usage. Specifically, we 
propose an approach to leverage a small amount of tar-
get data and an approach to decompose application-spe-
cific usage into easier to reason atomic segments.

3.3.1 Data augmentation

There is often insufficient data available for specialized 
tasks or domains. While collecting more annotations can 
be challenging, unlabeled images are often available. We 

Fig. 6 We utilize existing vision data and models to 
develop domain-specific FVLM at low cost.

Fig. 8 Our open vocabulary detector MOBIUS provides 
accurate localization of rare object categories, 

with language descriptions.

Fig. 7 The tight image-text alignment in ROSA enables 
accurate multi-modal retrieval.
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propose SelTDA5) (Self-Taught Data Augmentation), a 
strategy which uses a generative vision-language model 
to produce synthetic data. Training with SelTDA results 
in improvements of up to 9.87%, 6.38%, and 29.81% on 
robustness, generalization, and reasoning respectively.

3.3.2 Question decomposition

Domain-specific tasks or those with specialized rea-
soning patterns are challenging for generalist models, 
especially in realistic data-scarce settings. We propose 
selective question decomposition6) to improve generalist 
models on such tasks through dialogue that surfaces rel-
evant context without extra data. We achieve improve-
ments of up to 26% on medical datasets and correct up 
to 20% of prediction errors using decompositions.

4.	 Applications

We now discuss several applications for our founda-
tional vision-LLM.
AI Visual Assistant: The vision-LLM yields outputs 
grounded in images or videos, while the orchestration 
through code allows a transparent step-by-step rea-
soning (Fig. 9). This can be used to aid the visually 
impaired, allowing them to find objects, navigate safely 
or perform other tasks with a language interface. This 
application is being validated with an NEC-X startup.
Visual Conversation: The vision-LLM enables joint rea-
soning with images and text along with external knowl-
edge, which allows question-answering or conversation 
in multimodal data. Our application layer tools allow im-
provement of 13% on the public OK-VQA benchmark for 
external knowledge-based language reasoning in images. 

Fig. 9 Proposed visual AI assistant for NEC-X.

Fig. 10 Usage in an NEC-X VL-search app.

Fig. 11 Language-based tattoo analysis system.

Fig. 12 Our domain-specific FVLM used for video 
summarization for a VIR Lab application.

An example use-case is an NEC-X startup which seeks 
to improve the engagement of social media influencers 
with their audience by automating some interactions 
(Fig. 10).
Law enforcement: The VL-retrieval engine has been 
used for tattoo recognition for law enforcement, which 
allows a human operator to interpret tattoos and find 
matches based on semantic meaning beyond visual sim-
ilarity (Fig. 11).
Mobility: A domain-specific FVLM for mobility scenarios 
has been demonstrated for automated insurance in-
sights and summarization together with the VIR Lab at 
OH 2023 (Fig. 12).
Remote Sensing: The data augmentation methods in 
our application layer allow a foundational VLM to answer 
questions in satellite images even with a small amount 
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of data. We improve over BLIP on the RS-VQA bench-
mark (Fig. 13).
Medical Imaging: The question decomposition strat-
egy in our application layer improves a generalist VLLM 
on QA over medical images, a data-scarce, domain-spe-
cific specialized task. In the public PathVQA, SLAKE and 
VQA-Rad benchmarks, we obtain improvements of 22%, 
10% and 26% (Fig. 14).

5.	 Conclusion and Next Steps 

We showcased an architecture for a foundational vi-
sion-LLM that will automate development and deploy-
ment of computer vision solutions by understanding 
customer tasks, then developing code to solve them 
using external knowledge and available resources. This 
will be supported by developing new FVLM to solve tasks 
in specific domains, as well as tools to rapidly customize 
in specific applications. Several next steps are being de-
veloped, including: (a) automatic tuning of parameters 
for deployment, (b) self-training to update task-specific 
models based on application rewards, (c) reducing hal-
lucination and biases.
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respective companies.

Fig. 13 Examples for remote sensing.

Fig. 14 Examples for medical image reasoning.
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