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1.	 Introduction

The virtualization of radio access networks (RANs), 
based hitherto on hardwired ASICs, will become the 
spearhead of next-generation mobile systems beyond 
5G. Initiatives such as the carrier-led O-RAN ALLI-
ANCE have spurred the market and the research com-
munity to find novel solutions that import the flexibility 
and cost-efficiency of network function virtualization 
(NFV) into the very far edge of mobile networks.

Fig. 1 shows the architecture of a vRAN, with base 
stations (BSs) split into a central unit (CU), which hosts 
the highest layers of the stack; a distributed unit (DU), 
which hosts the physical layer (PHY); and a radio unit 

(RU), which hosts basic radio functions such as amplifi-
cation or sampling. To reduce costs, vRANs may rely on 
cloud platforms comprised of pools of shared computing 
resources (mostly CPUs, but also hardware accelerators 
brokered by an abstraction layer), to host virtualized 
functions such as the PHY. 

However, shared computing platforms provide a harsh 
environment for DUs because they trade off the predict-
ability supplied by dedicated platforms for higher flexi-
bility and cost-efficiency. While CUs are amenable to vir-
tualization in regional clouds, virtualized DUs (vDUs) — 
namely, the vPHY therein — require fast and predictable 
computation in the edge. 

To ease the explanation, we focus on frequency di-
vision duplex where uplink (UL) and downlink (DL) 
transmissions occur concurrently in different frequency 
bands, and on 5G’s baseline numerology (μ = 0 in 3GPP 
TS 38.211), which yields one transmission time inter-
val (TTI) per subframe (SF), and a SF has a duration of 
1 ms. Fig. 2 illustrates the basic operation of a typical 
4G/5G DU processor. Every TTI n, a worker initiates a 
DU job comprised of a pipeline of tasks (hereafter re-
ferred to as DU tasks).

RAN virtualization will become a key technology for next-generation mobile networks. However, due to the com-
puting fluctuations inherent to wireless dynamics and resource contention in shared computing infrastructure, 
the price to migrate from dedicated to shared platforms may be too high.  We present Nuberu, a novel pipeline 
architecture for 4G/5G DUs specifically engineered for shared platforms. Nuberu has one objective to attain reli-
ability: to guarantee a minimum set of signals that preserve synchronization between the DU and its users during 
computing capacity shortages and, provided this, maximize network throughput. To this end, we use techniques 
such as tight deadline control, jitter-absorbing buffers, predictive HARQ, and congestion control. 
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Fig. 1 vRAN architecture.
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(1)	 Process data
(2)	 Control channels carried by UL SF n
(3)	 Schedule UL/DL radio grants to be transported by 

DL SF n + M
(4)	 Process data
(5)	 Control channels for DL SF n + M
A worker executes a DU job in a thread, using comput-

ing resources allocated by a task scheduler; and multiple 
workers perform DU jobs in parallel to handle one DL SF 
and one UL SF every TTI, as shown in Fig. 2. 3GPP es-
tablishes a 4-ms one-way latency budget between UEs 
and CUs for eMBB traffic1). Consequently, there is a hard 
constraint on M that imposes a computing time budget of 
roughly M-1 ms to process each DU job (usually, M = 4).

Indeed, completing a DU job every TTI is vital to pre-
serve synchronization between the BS and its users 
and thus attain reliability. However, this is challenged 
by some compute-intensive operations within DU tasks 
such as forward error correction (FEC). These operations 
require substantial processing time and the solutions 
applied today on the market, namely, dedicated hard-
ware acceleration, diminish the very reasons that make 
virtualization appealing for the RAN in the first place: 
flexibility and cost-efficiency.

2.	 Nuberu design

We propose Nuberu, a novel pipeline architecture 
for 4G/5G DUs that is suitable for shared computing 
platforms. Our design follows one objective: to build a 
minimum viable subframe (MVSF) with critical signals 
for synchronization and control every TTI first to provide 
reliability first during moments of computing capacity 
shortage and, provided this, maximize network through-
put. 

To this end, we set up a deadline within every DU job 
to begin building an MVSF even if data processing tasks 
are unfinished. This deadline, depicted in black in Fig. 3, 
is set such that there is enough time to process an MVSF 

before the final job completion deadline (in dark gray in 
the figure). This is viable because, different from data 
processing tasks, the tasks involved in building an MVSF 
require little and roughly deterministic time. To do this 
efficiently, we need to decouple data processing tasks 
such that the information required to build an MVSF is 
ready on time and network throughput is maximized 
during computing capacity fluctuations. Consequently, 
we apply the following techniques.
(1)	To process DL data channel tasks

1)	 We adopt a two-stage DL radio scheduling ap-
proach

-	We issue temporary DL grants as early as possible 
in the DU pipeline, as shown in Fig. 3. Dedicated 
workers process (encode, modulate, etc.) these 
grants in separated threads and store the result-
ing data in a buffer.

-	Upon the MVSF deadline, final DL data grants are 
computed based on those already processed suc-
cessfully that are available in the buffer by that 
time. Grants generated in a job n that are not 
processed on time are hence delayed for a later 
job.

2)	 To mitigate the number of delayed DL data 
grants, the amount of DL data granted by the 
temporary scheduler is regulated by a conges-
tion controller that adapts the flow of DL data 
grants to the availability of computing resourc-
es. To this end, Nuberu’s radio schedulers use a 
DL congestion window ( ) that regulate 
the flow of DL grants. We adopt an additive-in-
crease / multiplicative-decrease (AIMD) algorithm 
where  increases by α PRBs every DU job 

 as long as con-
gestion is not detected or the maximum PRB ca-
pacity is reached, and multiplicatively decreases 

by β≤1  if conges-

Fig. 2 Every TTI (=1 ms), a worker must execute a DU 
job, comprised of a pipeline of interdependent DU tasks 

to process UL SF n and DL SF n + M, within M-1 ms.
Fig. 3 To provide reliability, Nuberu decouples UL/DL 
data processing tasks from the rest of the pipeline by 
integrating a 2-stage radio scheduler, a novel E-HARQ 

mechanism, and a congestion controller.
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tion is detected. Nuberu infers congestion if the 
buffer of encoded TBs contains λ > 0 times the 
vDU’s PRB capacity or more.

(2) To process UL data channel tasks
1)	 Dedicated workers process (demodulate, decode, 

etc.) UL data carried by each UL SF in separated 
threads.

2)	 Upon the MVSF deadline, an early HARQ (E-HARQ) 
mechanism infers the decodability of UL data 
based on feedback from the workers, as shown 
in Fig. 3. This enables us to estimate the radio 
information that is required to build an MVSF 
even if UL data processing tasks have not fin-
ished on time. The key idea behind our E-HARQ 
approach rests upon the concept of extrinsic 
information, which spawns organically by be-
lief propagation algorithms used by both turbo 
and LDPC codes. We refer the reader to the lit-
erature2) for detailed information about these 
coding techniques. In a nutshell, belief informa-
tion is encoded into log-likelihood ratios (LLRs), 

, where “input” refers to 
all the inputs of each decoding node i in a decod-
er, and b represents the information symbol (bit). 
The key to iterative decoding is the sequence 
of a posteriori LLRs of the information symbols, 
which is exchanged every iteration k between 
the decoding nodes of the decoder so each node 
takes advantage of the information computed by 
the others. To improve the bit estimations every 
iteration, the different nodes need to exchange 
belief information that do not originate from 
themselves. The original concept of extrinsic in-
formation was in fact conceived to identify the in-
formation components that depend on redundant 
information introduced by the incumbent code. 
Such extrinsic LLRs are used to transform a pos-
teriori LLRs into a priori LLRs used as an input in 
the next iteration. The evolution of the average 
magnitude of extrinsic information over decoding 
iterations is easily distinguishable for decodable 
data. Hence, by observing the pattern of extrinsic 
information we build a simple predictor that clas-
sifies the input data into three types: UNKNOWN, 
if the uncertainty is too high; DECODABLE, if the 
predictor is certain the data will be decoded suc-
cessfully; and UNDECODABLE, if the predictor is 
certain the data will not be decoded successfully. 

3)	 To maximize the predictive performance of 
E-HARQ, which depends on the amount of work 
done (iterations) before the MVSF deadline, an-
other congestion controller adapts the allocation 

of UL radio resources to the available computing 
capacity. Like its downlink counterpart, we define 

a congestion window , which bounds 
the number of UL PRBs that can be allocated to 
the DU’s users. Again, we adopt a simple AIMD 

algorithm that increases  additively 
 when congestion 

is not inferred, and decreases multiplicatively , 
 w i th  β<1,  when 

congestion is inferred. The obvious approach 
to estimate congestion from UL workload is to 
signal so every time a UL-Data worker does not 
finish before the MVSF deadline. However, this 
method does not fully exploit the predictive capa-
bility of our E-HARQ mechanism, which can infer 
the decodability of a TB well before explicit CRC 
confirmation. Conversely, our approach infers 
congestion every time E-HARQ cannot provide a 
prediction with certainty, i.e., outputs UNKNOWN, 
which occurs every time a UL-Data worker is un-
able to run sufficient decoding iterations before 
its deadline, and hence the uncertainty over the 
prediction is too large.

3.	 Evaluation

We next evaluate an experimental prototype of Nuberu.
We first set up an experiment with two DUs imple-

mented with vanilla srsRAN (M = 4), an open-source 
implementation of a fully-fledged 3GPP-compliant base 
station. We associate each DU with one user imple-
mented with srsUE and virtualized over Linux containers 
sharing 5 Intel Xeon x86 cores @ 1.9GHz. 

In this experiment, one DU (vDU 1) transmits and re-
ceives as much data as possible. Conversely, the second 
DU (vDU 2) transmits and receives traffic following a 
random process with different parameters, which gen-
erate normally-distributed computing workload with the 
mean (line) and variance (shaded area) shown at the 
bottom of Fig. 4: the higher the load variance of vDU 
2, the larger the fluctuations of the computing capacity 
available for vDU 1. 

Fig. 4 (top) depicts vDU 1’s relative network through-
put in light gray (“Baseline”) as a function of the work-
load produced by vDU 2. The figure shows that the per-
formance of vDU 1 quickly deteriorates. The reason is 
that, because both vDUs share the same CPU pool, vDU 
1 occasionally suffers from CPU resource deficit when 
vDU 2 produces a peak in demand. As a result, vDU 1 
workers executing DU jobs violate their deadline to send 
out the corresponding DL SF, as illustrated at the bottom 
of Fig. 2, which causes the user to lose synchronization 
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and throughput to drop. 
Conversely, as shown by the dark gray line in Fig. 4, 

Nuberu can sustain maximum throughput despite severe 
fluctuations in computing capacity. 

Fig. 4 Two vDUs competing for computing resources.

* The UL/DL data load of vDU 1 is the highest possible while vDU 2’s is variable.
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