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1.	 Introduction

Artificial intelligence (AI) today plays a crucial role in 
the automation of a broad array of tasks. The first step 
in automating any given task is to set indices for the lev-
els of acceptability or unacceptability (optimization indi-
ces). The AI automatically searches for the decision that 
maximizes or minimizes those indices (optimal solutions 
in mathematical optimization) as required. For example, 
when developing a marketing campaign, you would first 
set cost-effectiveness as an optimization index; the AI 
would then search for the campaign that best realizes 
this goal and determine at whom it should be targeted. 
However, setting an optimization index for tasks that de-
pend heavily on specialized human expertise and know-
how — expert-dependent tasks — is more difficult. You 
often have to work closely with experts to determine 
what should be used for optimization indices and how 
much emphasis should be put on them. This process 
involves repeated A/B testing, and consumes immense 
amounts of time and money, rendering it largely imprac-
tical.

To address this issue, NEC has developed intention 

learning technology. This technology uses the deci-
sion-making history data of multiple experts, gleaning 
from this the “intention” that drives the decisions as 
shown in Fig. 1. By executing mathematical optimiza-
tion on the learned optimization indices, AI can imitate 
the decision making of experts, enabling the automa-
tion of even expert-dependent tasks. Intention learning 
technology is based on inverse reinforcement learning 
(IRL)1). Its two main features are:
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Fig. 1  Overview of intention learning technology.
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1)	 Modeling complex intentions as interpretable opti-
mization indices

2)	 Significant improvement in computation efficiency 
compared to conventional IRL

When an expert makes a decision, the intentions or 
objectives that underlie that decision are many and 
complex. In order to automate that process, these 
intentions must be learned as complex optimization 
indices. With conventional IRL, this is achieved by mod-
eling using complex neural networks. NEC’s intention 
learning technology, on the other hand, models complex 
intentions as combinations of multiple simple intentions 
(linear forms). This allows you to explicitly understand 
what should be focused on in what situations and to 
what degree. This further assures the interpretability 
required for practical applications. Although the IRL is 
essentially an algorithm with a high computational cost, 
we have developed a method that significantly increas-
es computational efficiency and makes this technology 
more suitable for practical use. In the following sections, 
we will review descriptions of intentions in mathematical 
optimization problems, explain the features of inten-
tion learning technology, and provide some examples of 
practical applications.

1.1 Intentions in mathematical optimization problems

First, let’s examine “intention” as it applies to a math-
ematical optimization problem. In the following exam-
ple, we show how this would be used to deal with a shift 
scheduling problem in a retail store. This problem can be 
handled as a combinatorial optimization problem. The 
optimal solution is found by searching the schedule for a 
solution that satisfies the following conditions:

•	Condition 1: Required number of personnel must 
be assured.

•	Condition 2: Personnel must have the required 
combination of skills.

•	Condition 3: Must reflect each individual’s desired 
days off.

•	Condition 4: Number of working days for each in-
dividual.

•	Condition 5: Exclusion of prohibited working pat-
terns.

Conditions 4 and 5 must always be satisfied while 
conditions 1, 2, and 3 can be violated to some extent. 
Based on this, conditions 4 and 5 are set as fixed con-
straints. Schedules (combinations) that minimize the 
weighted sums (i.e., objective functions) of the violation 
levels of conditions 1, 2, and 3 are determined to be op-
timal solutions.

The weights of the components of these optimization 

indices represent intentions for what should be focused 
on and to what degree. In the shift scheduling problem 
as shown in Fig. 2, the intentions correspond to what 
should be focused on and to what degree in conditions 1, 
2, and 3. In this manner, the intention in a mathematical 
optimization problem in the intention learning technolo-
gy refers to the weight of each component of an optimi-
zation index.

2.	 Intention Learning Technology

In intention learning technology, IRL — the foundation 
for intention learning technology — is expanded. The 
two main features of intention learning technology are:

1)	 Modeling complex intentions as interpretable opti-
mization indices

2)	 Significant improvement in computation efficiency 
compared to conventional IRL

Before looking at the two main features of intention 
learning technology, we will summarize the basics of IRL.

2.1 IRL: The Foundation of Intention Learning

IRL is a method to solve inverse problems of reinforce-
ment learning. While in reinforcement learning an op-
timal solution is searched from optimization indices set 
in advance, in IRL decision-making histories of experts 
are assumed to be optimal solutions and their optimiza-
tion indices are therefore learned. Additionally, IRL can 
not only handle reinforcement learning but also inverse 
problems of various mathematical optimization prob-
lems such as combinatorial optimization and optimal 
control. Input items in IRL algorithms include: (1) de-
cision-making history data of experts, (2) optimization 
solvers for mathematical optimization problems (combi-
natorial optimization, optimal control, or reinforcement 
learning) corresponding to the automation target task, 
and (3) respective components of optimization indices 
and initial weight values, as shown in Fig. 3. The sys-
tem alternates between searching for an optimal solu-

Fig. 2  Intention in a shift scheduling problem.
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tion (decision-making history) based on an optimization 
index and updating the weight of the optimization index 
in order to minimize the difference between the optimal 
solution and the expert’s decision-making history. Once 
the optimal solution closely approximates the expert’s 
decision-making history, learning is complete and an op-
timization index now that matches the expert’s decision 
is output.

The two main issues affecting practical use of IRL are 
how to model a complex intention in an interpretable 
form and how to reduce the high computational cost 
that comes from having to repeatedly execute mathe-
matical optimization inside the algorithm.

2.2 Feature 1: Modeling complex intentions in an interpreta-

ble form

Conventional IRL learns experts’ complex intentions as 
single optimization indices. When modeled in linear form 
with high interpretability, this results in a lack of expres-
siveness. If you want high expressiveness, you have to 
model the intentions in neural networks, thereby sac-
rificing interpretability. Simply put, it has so far proven 
virtually impossible to achieve compatibility between in-
terpretability and expressiveness, which is essential for 

modeling complex intentions. NEC’s intention learning 
technology was developed to solve this problem. Using 
heterogeneous mixture learning2) — one of the cut-
ting-edge AI technologies that make up NEC the WISE 
— to expand IRL, intention learning technology is able 
to learn multiple linear forms and their switching rules 
from expert decision-making history data as optimiza-
tion indices. This makes it possible to express complex 
intentions as combinations of multiple simple intentions 
and to model them as interpretable optimization indices 
that allows you to explicitly understand what should be 
focused on and to what degree and in what situation 
(Fig. 4).

2.3 Feature 2: Improved computational efficiency of learning 

algorithms

In general, IRL alternately performs searches for 
optimal solutions based on optimization indices (deci-
sion-making history) and updates the weights of the 
optimization indices in order to minimize the differences 
from the experts’ decision-making histories. The com-
putational cost of repeatedly executing mathematical 
optimization processes inside the algorithm is enormous, 
making it critical that a way be found to reduce that cost. 
NEC’s intention learning technology addresses this issue 
by utilizing newly added non-optimal decision-making 
history data (based on random measures, for example). 
Specifically, it performs an approximate computation 
based on the new data with information about what kind 
of optimal solutions the present optimization indices will 
bring. This makes it unnecessary to execute mathemat-
ical optimization inside learning algorithms as shown in 
Fig. 5, achieving a substantial reduction in computation-
al cost compared to conventional IRL.

3.	 Application Example: TV Advertisement Scheduling

Scheduling advertising at a TV station requires optimal 

Fig. 3  IRL algorithm.

Fig. 4  Modeling complex intentions in an interpretable form.

Fig. 5  Improved computational efficiency of learning 
algorithms.
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allocation of multiple TV commercials to limited program 
time slots while considering the effectiveness of the ad-
vertisement and the preference of the sponsor3). Possi-
ble optimization indices include a deployable remaining 
time count (maximization problem: OR1) to maximally 
take advantage of the time slot and a surplus amount 
exceeding the required viewer rating (minimization prob-
lem: OR2). However, these indices cannot respond to 
more specific requirements such as the need to air com-
mercials for health food and supplements early in the 
morning or in the afternoon when the elderly are likely to 
watch TV. Gathering data regarding a broadcast strategy 
for each commercial is extraordinarily time-consuming, 
making automation of this task virtually impossible.

To apply intention learning technology to this TV com-
mercial scheduling task, we used previous broadcast 
schedules as expert decision-making history data. As 
components of optimization indices, we set deployable 
a remaining time count and viewer rating that could be 
obtained at each time slot. As a constraint, we made a 
setting so that the viewer rating required for each com-
mercial would be satisfied. Table shows a comparison of 
the magnitude of differences (cosine distance [×10−7]) 
between the actual TV advertisement scheduling and the 
schedule produced by the intention learning technolo-
gy (MaxEnt IO) and mathematical optimization without 
learned functions (OR1, OR2). The results make clear that 
intention learning technology was more capable of imitat-
ing expert decision making than the two other methods.

4.	 Conclusion

NEC’s intention learning technology promises to be 
a valuable solution to the problem of automating ex-
pert-dependent tasks, which until now has proven ex-
tremely difficult. By learning optimization indices as 
intentions based on the decision-making history data 

of various experts, this technology can make proposals 
that closely resemble the actual decisions that an expert 
would make as the TV commercial scheduling example 
makes clear. As AI automation becomes increasingly 
important in countries with shrinking workforces and 
decreasing populations, NEC’s intention learning technol-
ogy can benefit society by helping automate those tasks 
where it is difficult to pass on the expertise and skills of 
experts. 

Table Differences in actual TV advertisement scheduling 
according to different method

OR2 MaxEnt IOProducts OR1

27.1 0.73Cat food 3.46

223Investments 29.0 8.07

6.0717.1Hometown tax 1 211

103 24.4 14.2Internet TV

7.9323.6242Hometown tax 2

1.72 0.997.65Delivery pizza

Energy drink 43.0169 20.3

Online travel agent 1 194 13.544.8

14.517.4158Online travel agent 2

Organic vegetable 172 20.0 0.88

Overall average 25.6 6.01 3.66
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