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1. Introduction

The carbon nanotubes (CNTs)1) and carbon nanohorn 
aggregates (CNHs)2) are nanocarbon materials discov-
ered by Sumio Iijima, Senior Research Fellow at NEC 
Corporation. They are expected to function as innovative 
materials that are capable of improving the characteris-
tics of sensors, energy devices and composite materials. 
NEC is conducting wide-ranging R&D on these nanocar-
bon materials, from their fabrication to their device ap-
plications. A new nanocarbon material called the carbon 
nano-brush (CNB, fibrous carbon nanohorn aggregate) 
has recently been discovered3) and its excellent proper-
ties are expected to be applicable in various functions.

2. Carbon Nanotube

2.1 Features of the carbon nanotube

The carbon nanotube (CNT) is a carbon material dis-
covered in 1991 by Iijima, as described above. It has 
a cylindrical structure with a diameter of 1 nm (one 
billionth of a meter) and it is composed of hexagonal 
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Fig. 1 Electron micrographs of CNTs (a) (b), CNHs (c) (d) and CNB (e)
(The inserted diagrams are of relevant models).
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carbon networks as is graphite (Fig. 1 (a) and (b)). The 
single-walled CNT is expected to have various applica-
tions due to its features that include a special shape, 
toughness, high electrical conductivity and high thermal 
conductance. Another feature of this material is that it 
presents a semiconducting or metallic properties that 
depends on the arrangement of the carbon hexagons 
(chirality). The ratio of the semiconducting and metallic 
species is respectively 2:1 in general.

2.2 The Metallic/semiconducting separation technology of 

CNT and its applications in sensors

Semiconducting single-walled CNT is attracting atten-
tion as a material that uses printing technology for pro-
cedures in printed electronics that fabricate electronic 
products, such as circuitries. Using the semiconducting 
single-walled CNT with high electron mobility and chem-
ical stability as a transistor channel material makes it 
possible to fabricate sensor devices with large areas, 
high flexibility, low prices, high operation speeds and 
high chemical stability. These properties are essential for 
IoT (Internet of Things) applications. NEC has developed 
the electric-field induced layer formation (ELF) meth-
od capable of extracting semiconducting single-walled 
CNT with the high purity of 99% or more4). This meth-
od achieves stable separation of the semiconducting 
and metallic single-walled CNTs by dispersing the sin-
gle-walled CNTs using nonionic surfactant and moving 
them respectively to the cathodes and anodes by means 
of carrier-free electrophoresis (Fig. 2). The printed tran-

Fig. 2 Single-walled CNT separator using the ELF method
((a) Before separation, (b) After separation).

Fig. 3 Separated liquids of semiconducting CNT (Left) 
and metallic CNT (Right) collected after separation.

Fig. 4 A 16x16 flexible board fabricated with semicon-
ducting CNT ink.
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sistor array (Fig. 4) is fabricated with a highly function-
al ink made of the semiconducting single-walled CNTs 
based on this technology (Fig. 3). The process presents 
a tenfold or more times higher mobility than that with 
amorphous silicon. Here, the 256 devices are evenly 
separated into on and off states and a 6-digit on/off 
ratio is achieved5). The operation of a pressure sensor 
device using this transistor array has been tested and a 
multipoint dynamic pressure distribution was detected 
successfully. In the future, the material is expected to 
be utilized in IoT applications such as for the commodity 
management of convenience stores and warehouses. 
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Fig. 5 CNHs mass-production system scheme.

Fig. 6 Applications of CNHs.

the COs laser irradiation, the graphite target in the stor-
age chamber is automatically replaced. To reduce the 
number of graphite target replacements and the time 
taken to do this, large graphic targets with a diameter 
of 100 mm and a height of 500 mm are used. The CO2 
laser is output at 3.5 kW in the continuous oscillation 
mode, and the target is rotated spirally at 2 rpm during 
the output in order to prepare CNHs continuously. The 
produced CNHs are carried by an Ar flow through the 
pipe and dropped when they reach the collection cham-
ber. They are then caught in the collector vessel and are 
collected by closing the gate. Using this system, NEC 
has succeeded in the continuous production of CNHs at 
100 g/h, 1 kg/day.

As the CNHs have a relatively large specific surface area 
of 400 m2/g and high electrical conductivity, it is expected 
that they will be applicable as catalytic support for fuel 
cells or as the conducting material of lithium ion batter-
ies. The nanospace inside the sheath of the CNHs can be 
used by forming holes on each CNH by oxidation, and the 
specific surface area becomes as large as 1,420 m²/g or 
more in this case7). Because of this feature, R&D into the 
utilization of the nanospace is being actively conducted 
and applications such as for gas absorbents, electrodes of 
electric double-layer capacitors (EDLC), and drug delivery 
systems (DDS) are anticipated (Fig. 6).

4. Carbon Nano-brush

4.1 Features and expected applications of the carbon nano-brush

The carbon nano-brush (CNB, fibrous carbon nano-
horn aggregate) was discovered by Ryota Yuge, Principal 
Researcher at NEC Corporation, in 2015 (Fig. 1 (e))3). 
The CNB structure resembles a test tube brush or pipe 
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3. Carbon Nanohorn Aggregates

3.1 Features of the carbon nanohorn aggregates

The carbon nanohorn aggregates (CNHs) are nanocar-
bons discovered in 1998 by Iijima as described above. 
Each carbon nanohorn (CNH) has a cylindrical struc-
ture made of a single graphene sheet (Fig. 1 (c)) that 
resembles the structure of the single-walled CNT. The 
roll-shaped structure has a tip with a conical angle of 
about 19°, a diameter with a closed structure contain-
ing 5-membered rings of 2.5 nm and a length of 40 to 
50 nm (Fig. 1 (c)). CNH does not exist singly but some 
thousands gather in a radial shape to form a spherical 
aggregate with a diameter of about 100 nm (Fig. 1 (d)). 
The internal nanospace of the CNH can be used by treat-
ing the tip and defect area with oxidation (hole-opening 
treatment). NEC has already developed a technology for 
the mass-production of high-quality CNHs at a low cost 
and is currently marketing samples and developing vari-
ous applications.

3.2 Mass-Production Technology of Carbon Nanohorn Aggre-

gates and Its Applications

The CNHs can be fabricated by irradiating CO2 lasers 
onto a graphite target not containing a metal catalyst, 
in an Ar gas atmosphere at room temperatures. Fig. 5 
shows a schematic depiction of the CNHs mass-produc-
tion system6). This system is composed of three cham-
bers: the graphite target storage chamber (Replacement 
chamber), the laser irradiation chamber (Production 
chamber) and the CNHs collection chamber. The Ar gas 
enters the laser irradiation chamber from below and is 
exhausted from the top of the collection chamber. After 
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Fig. 7 Output characteristics of electrical double-layer 
capacitors.

cleaner; in which individual single-walled carbon nano-
horns gather radially and connect fibrously. The CNB can 
be fabricated by the laser ablation of a carbon target 
containing iron. CNB and CNHs are produced together 
by this process. As the fabrication method is almost 
identical to the already established method for the CNHs 
except for the target used, it is regarded that mass-pro-
duction will be achieved relatively easily. CNBs feature 
not only the high dispersion and high adsorption as for 
the traditional spherical CNHs, but also exhibit high 
conductivity and is therefore expected to have wide ap-
plications in the future. The CNB is highly dispersive like 
the CNHs. When a mixture of CNB and CNHs in ethanol 
is dispersed with ultrasonic dispersion and the dynamic 
light scattering of the solution is measured, particle size 
distributions are detected in the ranges of 70-300 nm 
and 1-10 µm. The size distribution at the micrometric 
order seems to belong to the CNB. Like the CNHs, the 
specific surface area of the CNB is increased greatly at 
around 1,600 m2/g, by oxidation. When comparing the 
electrical resistivity of the thin films fabricated on SiO2 
substrate by using CNB/CNHs mixture and CNHs alone, 
the CNB/CNHs mixture was 1/10th of that for the CNHs. 
This result showed that the CNB has an electro-conduc-
tive path in the one-dimensional direction. Therefore, it 
can be concluded that the CNB is a highly practical ma-
terial featuring high electrical conductivity, high disper-
sion and a large specific surface area.

4.2 Applications of Carbon Nano-brush

Since the EDLC needs to store high charges and input 
and output them rapidly, the electrode material should 
fulfill requirements such as high specific surface area, 
high electrical conductivity, and high dispersion. As the 

CNB meets these requirements, it is optimum for use 
with the EDLC. Fig. 7 shows the capacity retention rates 
of the EDLC prepared by using CNB/CNHs mixture after 
oxidation (oxCNB/oxCNHs), CNHs after oxidation (oxCN-
Hs), and commercially available YP50F (activated carbon) 
as the electrode material. The specific surface areas and 
capacitances of the oxCNB/oxCNHs, oxCNHs, and YP50F 
are almost identical but that the use of oxCNB/oxCNHs 
succeeds in improving the output characteristics (fast 
discharge) by more than 6 times that of the commercially 
available YP50F.

5. Conclusion

The present paper introduces the development of 
CNT, CNHs, and CNB materials by NEC Corporation. 
The separation technology of an excellent metallic- and 
semiconducting-CNT, called the electric field induced 
layer formation method, has been developed that will 
soon be of practical use. As the transistors fabricated 
with this technology will feature high performance and 
stability, its applications in the electronics domain are 
regarded as likely to be accelerated. On the other hand, 
as the mass-production technology of the CNHs is al-
ready established, manufacturers other than NEC, such 
as the reagent manufacturers, have started to market 
high-quality CNHs and their developments aimed at 
commercialization are advancing impressively. Finally, 
with regard to the CNB, active R&D has been conducted 
since its discovery in 2015, including that for the evalu-
ation of physical properties and the possibilities of appli-
cations. As described above, NEC has been creating and 
achieving practical applications for the new nanocarbon 
material technologies, one after the other. In the future, 
the corporation will apply these innovative nanocarbon 
materials to more of its products.
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