R&D supporting future cloud computing infrastructure technologies

Realization of the High-density SaaS Infrastructure
with a Fine-grained Multitenant Framework

SHIMAMURA Hisashi, SOEJIMA Kenji, KURODA Takayuki, NISHIMURA Shoji

Abstract

In achieving a SaaS-type cloud computing that will contain applications for multiple tenants, the density of contain-

ing tenants per infrastructure greatly affects the costs for providing services.

This paper introduces the fine-grained application flow control technology that maximizes the density of containing

tenants through letting the tenants share applications and then separating the tenants from each other for individual

processes.

SaaS, multitenancy, aspect oriented programming

1. Introduction

In recent years, services, so-called SaaS (Software as a
Services), are expanding that furnish the features of software
on servers via networks. One of the characteristics of the SaaS
is allowing users to use the features of software provided as a
service based on the rate according to the utilization volume
without owning hardware and software, so it can be consid-
ered as one of the cloud computing forms.

Although there are a variety of use cases considered for the
SaaS, if a SaaS provider is providing services for enterprises
and organizations, the users of these services are called the
tenants. The reason why the tenants are distinguished from
simple service users is that the tenants themselves may have
end users. For example, if a SaaS provider is providing for a
customer management service, enterprises that use this serv-
ice to manage their own customer information are the tenants.

Typically, a SaaS business for small- and medium-size com-
panies is required to provide for services at costs lower than
those of services for large companies. To reduce the costs for
providing for services, the multitenancy technology is essen-
tial that allows the tenants to share the same hardware and
middleware. This paper introduces the fine-grained applica-
tion flow control technology that maximizes the density of
containing tenants per hardware through letting the tenants
share application processes and then separating the tenants
from each other for individual processes.

132

2. Multitenant System

2.1 Multi Instance Type

There are several types of multitenancy approaches so as to
operate applications in the SaaS form. The simplest way is to
prepare server hardware or a virtual machine for each tenant
and run applications on respective operation systems. Thus, a
multitenant environment can be easily built (a and b in Fig. 1).

To enhance the infrastructure utilization efficiency, it is
necessary for the tenants to share up to higher layers. For ex-
ample, a method of providing each tenant with processes by
making the operating system common to the tenants, or a
method of deploying application programs for each tenant by
making up to the application server common to the tenants can
be considered (c and d in Fig. 1).

Benefits from these methods are that the service level can be
easily maintained and changes in applications programs are not
needed for multitenancy because the operating status of each
tenant can be monitored and controlled relatively easily. On the
other hand, since application programs corresponding to the
number of tenants are provided, deployment alone consumes
the volumes of hardware and operating system resources in
proportion to the number of tenants contained.

Such multitenancy is a method of deploying and running
multiple application programs, so this research refers to it as
the multi instance type multitenancy.

Special Issue on Cloud Computing

Multi instance type

LAP

enant

Single Instance Type

(d) (e)

MW
(ON]
HW

<G>
BE
enant A| | [Tenant B] E : lenant A, :;
ww

MW
[os]
(]

Infrastructures
isolated among HW VM
tenants

Infrastructures

shared among tenants

HW~0S

MW AP Data(Proces)

HW~0S HW~MW HW~AP

Easy tenant isolation

Fine-grained AP flow
control technology

| Infrastructure usage efficiency (number of tenants contained)

Fig. 1 Type of multitenancy.

2.2 Single Instance Type

To further improve the efficiency of containing tenants per
hardware, there is a method that separates tenants for each
process by making up to application programs common to the
tenants (e in Fig. 1). With this method, there are such draw-
backs that application programs must be changed for multite-
nancy and processing for a tenant is likely to affect that for
another. In contrast, there is such a benefit that the efficiency
of containing tenants per hardware can be maximized be-
cause only one application program is deployed regardless the
number of tenants contained.

In this research, this multitenant system is referred to the
single instance type multitenancy. Unless otherwise noted,
multitenancy refers to the single instance type in this paper.

3. TIP-Through Model

This section explains the TIP-Through model that achieves
the single instance type multitenancy.

3.1 Outline

This research designed the Tenant ID Pass Through (TIP-
Through) model as a core of the fine-grained application flow
control technology. The TIP-Through model defines the
scheme of propagating the identifiers of tenants as the process-
ing targets (tenant IDs) and the scheme of allocating the ten-

ants to appropriate processes and resources when different
processes are required for the tenants, independently of the
application flow, then applies them to the application on de-
mand.

Separating the necessary features for application process-
ing and those necessary for multitenancy from each other in
this way results in the following effects:

- Higher efficiency of multitenancy for existing applications

- Standardized code base for single tenant applications used by
respective system integrators and multi tenant applications for
SaaS

3.2 Configuration of the TIP-Through Model

The TIP-Through model consists of three elements; (1)
Identification, (2) Tunneling, and (3) Allocation. Fig. 2 illus-
trates the schematic diagram of the TIP-Through model. Re-
spective features and operation examples are explained below.

(1)Identification

“Identification” is a feature that interrupts the application

process at the beginning and identifies which tenant is tar-

geted by the process.

For example, assume that a string for identifying the tenant

is being inserted at the beginning of the path for the request

URL via HTTP. For access to “http://testservice.exam-

ple.com/tenant1/”, which tenant is intended by the process is

identified using string “tenantl” as the key and a pair of this
string and the identifier for identifying the process for the
corresponding access is recorded in the tunneling feature.

NEC TECHNICAL JOURNAL Vol.5 No.2/2010 — 133

R&D supporting future cloud computing infrastructure technologies
Realization of the High-density SaaS Infrastructure with a Fine-grained Multitenant Frame-
work

(2) Tunneling

Tunneling is a mechanism that links identification to alloca-
tion. This feature stores the application process associated
with the tenant identifier by the identification feature, prop-
agates the tenant identifier to the allocation location, and
enables referencing from that location.

For example, if an application runs on the Java EE server, a
pair of the thread identifier that identifies the application
process and the tenant identifier is stored in the tunneling
feature. As long as normal method calls continue, the ten-
ant identifier corresponding to the process can be acquired
by inquiring with the thread identifier as a key. However,
cases in which remote calls or thread-to-thread communica-
tions via RMI or SOAP spread over threads separately re-
quire a scheme that creates tunneling features individually
for the calling party and called party and links the tenant
identifier between the tunnels.

(3)Allocation

The allocation feature interrupts the application process and
allocates the process for the tenant’s unique resource.

This feature duplicates or divides the shared resources of the
entire application and allocates to the tenants or switches the
tenant’s unique data such as the database properly for each
tenant. This part controls the application process flow de-
pending on the tenant.

For example, many Web applications search for the neces-
sary data for processing and store it in the database. To
achieve multitenancy, proper storage is required so that da-
ta of the tenants will not be mixed together. Prior to such

processing of the tenant’s unique resource, the tenant iden-
tifier being processed is queried to the tunneling feature and
the process flow is controlled so that it will access the data-
base for the tenant corresponding to the tenant identifier in
order to achieve multitenancy.

4. Applying the TIP-Through Model to Applications

There are many ways considered about how to apply the TIP-
Through model to applications. Major application methods are:
(a) Embedding directly into the source code, (b) Using the plug-
in mechanism of the application server or application frame-
work, and (c) Using Aspect Oriented Programming (AOP). In
this research, the infrastructure for applying the TIP-Through
model using the technology of AOP in (c) has been produced
experimentally as the multitenant library for the J2EE appli-
cation. This section explains the overview of AOP and imple-
mentation of the multitenant library below.

4.1 Aspect Oriented Programming (AOP)

AOP is a programming approach that separately describes
common features which are hard to handle in object-oriented
programming and spreading over many classes. For example,
common features such as logging and exception handling,
spreading over classes, can be described separately from the
application’s original process then they can be embedded into
the application process. Such a description is referred to as the

134

Definitions Features
A feature that - Identifying the target [Tenant A] [Tenant B]
identifies which tenant according to the ~ 7
Identification | tenant is targeted service requests s:ﬂt‘:;sa'ﬁ{es’mnse N
by the service - Detection of the tenant e|-—--—- -
requirement identification
- Storing the tenant
A mechanism that |dent|ﬁer after belng‘ o
. . . - associated with service ¢----.
Tunneling | links identification
. requests bt
to allocation . ation
- Propagating the tenant
identifier for allocation
Allocating the - Duplicating or dividing
process for the the shared resources of
. tenant's unique the entire application -
Allocation que e app
resource according - Allocating the tenant Tenant unique data
to the tenant unique data to the
identifier appropriate tenants

Fig. 2 Schematic diagram of the TIP-Through model.

Special Issue on Cloud Computing

aspect. The compiler or loader provided by AOP implementa-
tion inserts the aspect at the specified position in the applica-
tion code.

In this research, characteristics for multitenancy are descri-
bed as aspects and they are applied to the application by the
feature provided by AOP. Specifically, TIP-Through model
identification and allocation features are described as aspects
and inserted into the application process by AOP. Benefits of
applying using AOP are:

- Application side code correction and recompiling are not
necessarily required.

- Since the additional code for multitenancy can be applied or
reset via setting alone, the multi tenant version and single ten-
ant version can share the most part of the code and switching
can be easily attained.

4.2 Multitenant Library

In this research, a multitenant library was produced experi-
mentally so that AOP can easily apply TIP-Through to appli-
cations. Major components of the multitenant library are
explained below according to Fig. 3 .

(1)Feature Plug-in Library
The identification, tunneling, and allocation features of TIP-
Through can be divided into several patterns depending on
the structure of the application as the target and on the spec-
ifications of the desired multitenant application. Providing
parts matching these patterns and reducing the implementa-
tion man-hours for the identification and allocation fea-
tures can greatly save the costs for multitenancy.

(2)Multitenant Container Feature

This feature is an entrance for respective parts of identifica-

tion, tunneling, and allocation accessing each management

Tenant deployment
management
Session \i/Tenant deployment information
information -
""" >l Multitenant Parts library
:I management F
o i I Parts
Plug-in Multitenant
container
icati Association
Applicat
ppiesten definition between

| AORP library (AspectJ) |

plug-ins and parts

Java EE platform

Fig. 3 Overview of multitenant library configuration.

feature described below. The multitenant container feature
plays the role of a container that integrates and links vari-
ous management features constituting the multitenant li-
brary together.

(3) Tenant Deployment Management Feature
This feature adds new tenants to the services. The tenant de-
ployment management feature registers the tenant’s unique
resource information in the multitenant management fea-
ture for the multitenancy application and creates and regis-
ters resources on the application server and database server.
(4)Multitenant Management Feature
This feature is the core of the multitenant library and main-
ly consists of the following features:

e Session management feature

The session management feature realizes linkage of the ten-
ant identifier between tunnels if propagation of the tenant
identifier cannot be achieved in a tunnel alone. For exam-
ple, this feature is used to identify multiple application
processes for a series of HTTP requests as a set of process-
es for a particular tenant.

o Plug-in management feature

This feature applies the tenant’s unique information to the
functional parts of identification and allocation defined in
the parts library then executes the functional parts. For the
tenant’s unique information, the tenant identifier is ac-
quired from the tunnel and the unique information of the
corresponding tenant from the tenant management feature
described below.

e Tenant management feature

This feature manages the tenant’s unique information such
as the access URL, database name, and resource file path
per tenant that is set by the tenant deployment manage-
ment feature.

4.3 Multitenancy Procedure

Not all of multitenancy can be automatically achieved. You
must apply each feature of the TIP-Through model while look-
ing at the application code. If multitenancy is automatically
applied ad hoc to existing applications, serious degrades may
be caused.

In this research, we therefore created a guide for the multi-
tenancy procedures of existing applications, assuming that the
multitenant library was to be used. This guide is organized as
described below and explains necessary procedures.

- Design: Identification of the location for access to the re-
source as the allocation target and decision of the identifica-

NEC TECHNICAL JOURNAL Vol.5 No.2/2010 — 135

R&D supporting future cloud computing infrastructure technologies
Realization of the High-density SaaS Infrastructure with a Fine-grained Multitenant Frame-
work

tion method

- Implementation: Implementation of the codes for the alloca-
tion and identification features

- Deployment: Setup for applying the above implementation to
the application and middle-ware

- Test: Testing degrades and multitenancy

We applied multitenancy to a simple inventory control ap-
plication using the fine-grained application flow control tech-
nology in this research. Up to approximately 50 tenants were
successfully deployed on a server without any specific prob-
lems in operation. Containing tenants at a much higher densi-
ty can also be achieved, although it depends on the frequency
of access to each tenant. For comparison, we performed de-
ployment with the multi instance type multitenancy model
shown as d in Fig. 1. Approximately 20 tenants fully con-
sumed the file handles of the operating system and the opera-
tion was in trouble. Therefore, it can be said that the fine-
grained application flow control technology utilizes system
resources efficiently.

We also consider that isolating multitenancy requirements
from the application logic using this technology is effective for
reduction in man-hours for multitenancy of existing applica-
tions.

On the other hand, the prerequisite for the current multiten-
ant library is that many tenants share the same application as
one of the issues. Therefore, the requirement of customiza-
tion for each tenant is not supported. However, it has been
demonstrated that the customization requirement can be sup-
ported to some degree by switching particular processes for
each tenant using the TIP-Through model. We therefore con-
sider that integration into the multitenant library is feasible.

Additionally, if a very high load is applied to a particular
tenant, the processing performance of other tenants may be af-
fected. This problem cannot be currently avoided for multite-
nancy of the single instance type. Technical development
relating to performance monitoring and resource control for
each tenant is required.

Further, this technology is the model that shares many re-
sources among tenants. Considerations in security are re-
quired e.g. to check to see if resources of a tenant may be
mistreated as those of another.

136

This paper explained the single instance type multitenancy
that allows for maximization of the number of tenants con-
tained per hardware and then explained the fine-grained appli-
cation flow control technology for achieving such multitenan-
cy. Itis expected that multitenancy of existing applications can
be efficiently realized through multitenancy using the TIP-
Through model as the core of this fine-grained application flow
control technology.

*Oracle and Java are registered trademarks of Oracle Corporation and its subsidiaries and
affiliates in the United States and other countries.

Authors' Profiles

SHIMAMURA Hisashi
Principal Researcher
Service Platforms Research Laboratories

SOEJIMA Kenji
Assistant Manager
Service Platforms Research Laboratories

KURODA Takayuki
Researcher
Service Platforms Research Laboratories

NISHIMURA Shoji
Assistant Manager
Service Platforms Research Laboratories

