
The Compilers and MPI Library for SX-9
YOKOYA Yuji, KUDOH Yoshihiro, HAYASAKA Takeshi
Jesper Larsson TRAEFF, Hubert RITZDORF, HAYASHI Yasuharu

Abstract
The SX-9 provides FORTRAN90/SX and C++/SX, respectively, a Fortran compiler and a C/C++ compiler; both of
which feature excellent optimization, vectorization and parallelization functions. HPF/SX V2, (a compiler for HPF (High
Performance Fortran), which is the de facto standard language for distributed parallel processing), and MPI/SX and
MPI2/SX, (fully compliant with the distributed parallel processing interfaces MPI-1.3 and MPI-2.1 specifications) are
also provided. This paper is intended to introduce the functions and features of the speed-up technology adopted in
these programming interfaces for the SX-9.

Keywords

SX Series, supercomputer, compiler, MPI, HPF, Fortran, SX-9, C, C++
language, shared parallel, distributed parallel

1. Introduction

The Supercomputer SX-9 provides a powerful hardware
mechanism that can respond to the needs of large-scale, ultra-
high-speed S&T computations, particularly in the field of
numerical simulations. The compiler and runtime library ca-
pabilities are very important for making full use of the power-
ful hardware and obtaining maximum performances.

In order to enable the hardware to manifest its high level
performance, the SX-9 provides FORTRAN90/SX and C++/
SX compilers that have further advanced the excellent optimi-
zation, auto vectorization and auto parallelization functions
already proven in the previous SX Series. Also provided are
the HPF/SX V2, MPI/SX and MPI2/SX distributed parallel
program interfaces that are tuned especially for the SX-9.

2. FORTRAN90/SX and C++/SX

The FORTRAN90/SX is a compiler in full-compliance with
Fortran standard ISO/IEC 1539 and JIS X3001:1998. It also
supports functions provided by the latest Fortran standard
(usually called Fortran 2003); these include interoperability
with C, exceptions and IEEE arithmetic.

C++/SX is a compiler product containing the combined
functionalities of C and C++ compilers. The C compiler is

compliant with the international C language standard ISO/IEC
9899:1999 and also permits the use of the complex type that
has been newly added to the standard. The C++ compiler is
compliant to international C++ language standard ISO/IEC
14882:1998 and provides exception handling, runtime type
identification and standard template libraries.

Both FORTRAN90/SX and C++/SX support OpenMP Ver-
sion 2.5, which is the standard API for shared memory type
parallel processing.

In the following sections, we introduce the functions and
features of these two compilers that have been enhanced for the
SX-9.

2.1 Instruction Sorting across Branch Instructions

The SX-9 has a total of 6 vector pipelines including two for
multiplication, two for addition, one for logic operations and
one for division/square-root operations. It is capable of simul-
taneous execution of two multiplications, two vector addi-
tions, one vector logic operation and one vector division (or
square-root operation). It is important to let these vector pipe-
lines operate in parallel whenever possible in order to obtain
the maximum performance from the SX-9.

FORTRAN90/SX and C++/SX simulate the operations of
the SX-9 hardware and reorder the instruction sequences into
optimum order for maximum utilization of the hardware re-
sources. In doing this, they make it possible to sort instruc-
tions in a wide range of instruction sequences across branch

NEC TECHNICAL JOURNAL Vol.3 No.4/2008 ------- 53

 Supercomputer Operating System & Program Development Environment

Fig. 1 Array assignment statements and vector instruction
sequence of fortran.

Fig. 2 Image of operation of vector instruction sequence of the
SX-9.

instructions and to find more simultaneously-executable in-
structions.

As an example, Fig. 1 shows array assignment statements of
Fortran and an image of the vector instruction sequence that
can be generated from them.

The example has a vector instruction sequence containing
two vector AND, three vector multiplication and two vector
addition operations for obtaining absolute value ABS from the
array assignment statements.

The compilers simulate the operation of the SX-9’s vector
unit, assign the vector registers and reorder instructions, so that
as many vector pipelines as possible can operate simultane-
ously. Additionally, an instruction sequence is generated with
which a total of five vector operations including one AND op-
eration, two multiplications and two additions can be execu-
ted simultaneously as shown in Fig. 2 .

As seen here, the compilers of the SX-9 apply instruction
reordering to increase the opportunities of parallel operations
of vector pipelines over a wide range, in order to let the SX-9
manifest its high level of operation performance optimally.

2.2 Vector Data Buffering Function

High-speed access to arrays in memory is required for the
execution of meteorological and flow analysis programs. Gen-
erally, the method for handling these programs is to install a
memory cache between the memories and registers. Howev-
er, as the hardware has the tendency of saving all data in the
caches, the consequent insufficiency of cache capacity may
mean that for extremely large arrays or when other data is large
that really necessary arrays may sometimes be unable to en-
ter the caches. The projected cache benefits may thus become
unavailable.

To deal with such a situation, the SX-9 has a hardware
mechanism called ADB (Assignable Data Buffer) added be-
tween the memory and vector register. ADB can buffer data
selectively using the vector data buffering function of the com-
piler. For instance, when ADB is used to buffer only the
frequently accessed arrays, high-speed access to the arrays will
be possible for a long period of time.

When the destination of an array or pointer is specified us-
ing the on_adb compiler directive option, the loading and
storage of the vectors are performed via ADB. At this time,
data is buffered in ADB at the first vector loading or storage.
When the same data is used later on, the data buffered in ADB is
loaded. As data loading from ADB is possible at a higher speed
than from memory, this function can increase the speed of sec-
ond and later vector loading operations.

Fig. 3 shows an example of a specification of an on_adb
compiler directive option in a Fortran program. The process-

Fig. 3 Specification in Fortran program.

54

 Supercomputer Operating System & Program Development Environment
The Compilers and MPI Library for SX-9

Fig. 4 Operation of ADB.

ing is identical with both programs. The operation of the vec-
tor data buffering function is also similar to the above.

Fig. 4 shows the operation of the vector data buffering func-
tion when the program shown in Fig. 3 is executed.

1) According to the “on_adb(a)” specification immediate-
ly before the first loop, the data of array a is buffered in ADB
during vector loading of array a.
2) According to the “on_adb(c)” specification, the data of
array c is buffered in ADB during vector storing of array c.
3) When array a is referenced for the second time, the data
of array a, buffered in ADB is used in vector loading.
4) In referencing arrays a and c in the second loop, the da-
ta of arrays a and c that is buffered in ADB is used in the
vector loading.
5) Since array b is not specified as using the on_adb direc-
tive option, the vector storing of the array is performed
directly to the memory without using ADB. In this opera-
tion, the data of array b is not buffered in ADB.
Effective use of the vector data buffering function also makes
it possible to load list vectors (indirectly referenced vec-
tors) and to improve the scalar loading performance of the
array elements.
(1)Improvement of List Vector Loading Performance
When an array used as a list vector is specified using the
on_adb compiler directive option and is buffered in ADB,
the subsequent data loading will be possible at a higher
speed.
Fig. 5 shows an example with a Fortran program. In this ex-
ample, when arrays a and b are stored as continuous vec-
tors, their data is buffered in ADB. This procedure can
improve the memory access performance when referencing

Fig. 5 Improvement of list vector loading performance.

Fig. 6 Improvement of the scalar loading performance of the array
elements.

list vectors a(idx(i)) and b(idx(i)) in the second loop.
Performance improvements using the same technique are
also possible for the C/C++ programs.
(2)Improvement of the Scalar Load Performance of Ar-
ray Elements

When performing scalar loading of array elements if the ar-
ray element has already been buffered in ADB, the data is
loaded from ADB. For example, when several elements of
an array that has been loaded or stored in a vectorized loop
are used immediately after the loop, the array elements can
be loaded at a higher speed if the array has previously been
specified using the on_adb compiler and buffered in ADB.
Fig. 6 shows an example with a C program. In this exam-

NEC TECHNICAL JOURNAL Vol.3 No.4/2008 ------- 55

 Special Issue: Supercomputer SX-9

ple, the data of array a, is buffered in ADB during vector
storing of the array. Consequently, when the elements of the
array are referenced in the second loop that cannot be vec-
torized, the data buffered in ADB is used in scalar loading
so that the memory access performance for a[i] in the sec-
ond loop can be improved.
Performance improvements using the same technique are
also possible with the Fortran programs.
In this way, selecting the data to be buffered in ADB opti-
mally and intending to use the buffered data repeatedly
whenever possible enables effective use of the vector data
buffering function and improves the memory access per-
formance. In the future, we intend to enhance the compil-
ers so that they can select the data to be buffered in ADB and
thereby facilitate an increase in the execution speeds of pro-
grams.

3. MPI/SX and MPI2/SX

MPI/SX and MPI2/SX fully implement the Message Pass-
ing Interface specifications MPI-1.3 and MPI-2.1, as defined
by the MPI Forum. MPI is used for message passing type dis-
tributed parallel processing, and interfaces are defined for
Fortran, C and C++ programming languages.

Since data communication in message passing parallel pro-
grams is a major factor determining the efficiency of parallel
computation, an efficient MPI library is important and must
provide high-speed data transfer. With the SX-9 we have en-
hanced the IXS system for inter-node communication, and
enable configurations with up to 16 RCUs which significant-
ly improve the maximum hardware communication through-
put. In the following sections, we briefly discuss the speed
increase achieved by MPI/SX and MPI2/SX with the en-
hanced IXS.

3.1 Improvement of Throughput Performance

For point-to-point communication in which data is transfer-
red between two processes, the enhanced IXS is utilized by
dynamically dividing data into smaller blocks (if it is larger
than a certain minimum block size). The transfer of these
blocks is distributed optimally among multiple RCUs and exe-
cuted simultaneously. This improves the throughput perform-
ance which approaches the peak performance of the SX-9
hardware (Fig. 7).

Fig. 7 Comparison of inter-node communication throughput
performances.

Fig. 8 Binomial and N-nomial communication tree structures and
data transfer (Example of broadcast communication).

3.2 Enhancement of the Collective Communication
Algorithm

The collective communication operations, in which multi-
ple processes participate in simultaneous data transfers, are
implemented using various tree-like communication struc-
tures built over the SX-9 nodes. For small data, binomial trees
usually give the best performance. In order to utilize efficient-
ly the multiple RCUs of the SX-9 for small data, these struc-
tures are generalized to N-nomial trees (N can be up to 16),
where data are sent simultaneously by multiple RCUs. This
reduces the number of stages required for a data transfer to all
nodes(Fig. 8). For large data, the techniques for point-to-point
communication are used to improve the individual transfers, in
combination with for instance pipelined binary trees. By these
techniques we have succeeded in increasing the communica-
tion speed by full use of the hardware properties from the
latency level of small transfer sizes to the throughput level of
the large transfer sizes.

56

 Supercomputer Operating System & Program Development Environment
The Compilers and MPI Library for SX-9

4. HPF/SX V2

HPF (High Performance Fortran) is an extension of For-
tran and is the de facto standard language for distributed
parallel processing.

In distributed parallel programming, it is necessary to con-
sider three factors, which are data distribution, computation
partitioning and communication. When HPF is used, compu-
tation partitioning and generation of communication can be
performed automatically by simply inserting comment-line di-
rectives for specifying the data distribution method in an ex-
isting Fortran program. This allows even beginners to develop
distributed parallel programs easily.

HPF/SX V2 is a compiler supporting HPF2.0, and major
parts of the HPF Approved Extensions and HPF/JA exten-
sions. It features enhancement of the productivity/maintaina-
bility improvement functions in distributed parallel program-
ming, which are special features of HPF, for the SX-9 Series.
In the following sections, we will introduce some of the most
important improved functions.

4.1 Tuning Support Functions

(1)Parallelization Information List
In addition to the existing diagnostic messages, the paralle-
lization information list indicating the parallelization status
and communication generation status can be generated by

Fig. 9 Parallelization information list.

specifying a compile-time option. The parallelization infor-
mation list makes it easy to extract the points where com-
munications are generated, the loops that are judged not to
be parallelizable by the compiler and the loops that are not
parallelized as well as the parallelized loops, so that the users
can easily identify the points to be tuned (Fig. 9).
(2)Procedure Boundary Communication Detection
When the distribution specified to a dummy or an actual ar-
gument is inappropriate, the performance is degraded due to
the generation of copies accompanied with communica-
tions at the invocation of and return form the procedure. HPF/
SX V2 is able to output the information on the argument and
procedure names when a communication is generated on a
procedure boundary by specifying a runtime option.

4.2 Debugging Support Functions

(1)Array References out of Declared Bounds Detection
An option is available to output the array names and pro-
gram line numbers containing array references out of de-
clared bounds. This function does not hinder vectorization
and parallelization in principle, so it can be used to check
array references out of declared bounds in a practical exe-
cution time.
(2)Inter-procedure Array Characteristic Inconsistency
Detection

In HPF, the characteristics such as the shapes and types of
the variables associated with each other across procedures,
namely common block variables and arguments, should in
principle be identical. An option is available to detect incon-
sistency between these variables and output the names of the
variables and procedures at runtime.

5. Conclusion

This paper introduced the compilers and MPI libraries of the
SX-9. In the future, we intend to optimize and enhance the
language functions of FORTRAN90/SX, C++/SX and HPF/
SX V2. We will also increase the system speed by tuning the
performances of MPI/SX and MPI2/SX so that the SX-9 can
offer its optimum hardware performance.

NEC TECHNICAL JOURNAL Vol.3 No.4/2008 ------- 57

 Special Issue: Supercomputer SX-9

Authors' Profiles

YOKOYA Yuji
Expert,
1st Computers Software Division,
Computers Software Operations Unit,
NEC Corporation

KUDOH Yoshihiro
Expert,
1st Computers Software Division,
Computers Software Operations Unit,
NEC Corporation

HAYASAKA Takeshi
Assistant Manager,
1st Computers Software Division,
Computers Software Operations Unit,
NEC Corporation

Jesper Larsson TRAEFF
Chief Researcher,
IT Research Division,
NEC Laboratories Europe

Hubert RITZDORF
Research Fellow,
IT Research Division,
NEC Laboratories Europe

HAYASHI Yasuharu
Assistant Manager,
1st Computers Software Division,
Computers Software Operations Unit,
NEC Corporation

58

 Supercomputer Operating System & Program Development Environment
The Compilers and MPI Library for SX-9

