
1. Introduction

34

tracts control fl ow that consists exclusively of the parts associ-
ated with runtime errors. It then develops a gigantic logical
formula that represents the transition of variable values in the
control fl ow and a logical formula that represents each runtime
error and calculates a variable value that satisfi es both of the
two formulae by using a model checking engine based on a
highly effi cient algorithm for the satisfi ability problem (SAT).
The strength of VARVEL lies in the construction of a small-
sized model to compensate for the weakness against state ex-
plosion of model checking and the use of a model-checking
engine of the world’s fastest class. The model-checking engine
performs an exhaustive search of 4.2 billion (232) value combi-
nations per variable so that it can detect troubles that would be
overlooked with traditional review or test methods.

The signifi cant increase in the scale of software development
in the embedded domain has meant that the assurance of soft-
ware quality has become an important issue. Among a variety
of development methods and tools proposed for dealing with
this issue, the methods known as the formal methods are at-
tracting particular attention. At NEC, we applied the model
checking technology, which is one of the formal methods, and
developed VARVEL (V 1.0) as a tool for detecting bugs (run-
time errors) that are inherent in programs written in C-lan-
guage.

The formal methods refer generically to techniques based on
logic, set theory and algebra for the specifi cation and verifi ca-
tion of systems. As a kind of formal method, model checking
is “the technology for thoroughly checking abnormal behavior
of a system that may either be software or hardware by input-
ting its state transition model in a computer,”1) and regarded as
the good method capable of early discovery of troubles during
execution. It has initially been used in design verifi cation in
the fi elds with high reliability and safety requirements, such as
aerospace, communications and semiconductor industries, but
its application into the verifi cation of source codes has been
advanced recently.

NEC laboratories have also been conducting research into
application of a model checking engine that has been proven in
LSI design verifi cation for the verifi cation of source codes2)
and VARVEL is one of the achievements of this research (Fig.
1). VARVEL analyzes the source codes in C-language and ex-

The newly developed C-language verifi cation tool VARVEL utilizes the model checking technology that is one of the formal methods

and detects bugs (runtime errors) that are inherent in programs by modeling the source codes written in C-language and verifying

them statically and exhaustively. This paper is intended to introduce the technical background of VARVEL and outline its functions.

C-Language Verifi cation Tool Using Formal
Methods “VARVEL”
TOKUOKA Hiroki, MIYAZAKI Yoshiaki, HASHIMOTO Yuusuke

Keywords

static verifi cation, C-language, formal method, model checking

Abstract

Embedded Software Development Environment Solutions

2. Formal Methods

Fig. 1 C-language verifi cation tool VARVEL.

214E.indd 34214E.indd 34 07.6.15 9:58:50 PM07.6.15 9:58:50 PM

35NEC TECHNICAL JOURNAL Vol.2 No.2/2007

Special Issue : Embedded Software and Solutions

Table 2 Main specifi cations of VARVEL.

3. Target of Development
combinations of paths and variable values.

Currently, the code inspection tools (CDI tools) are used
widely as the static source code verifi cation tools for detecting
descriptions that would cause troubles and the violations of
coding conventions. Table 1 shows the differences between
the CDI tools and VARVEL.

As shown in the table, the two tools have different applica-
tions and purposes, and can be regarded as being in comple-
mentary relationship. VARVEL is not a tool to replace existing
tools. Instead, it is assumed to be combined with an existing
tool as a solution for detecting bugs effectively.

Table 2 shows the main specifi cations of VARVEL (V 1.0).
(1) Functional Confi guration and Operating Environ-
ments
VARVEL is composed of the Command function that inputs
the analysis target C-source code and outputs the verifi cation
result (XML format), and the Viewer function that displays
the verifi cation result output from the Command and sup-
ports the interactive confi rmation, analysis and survey. The
operating environments of these functions are Linux and
Windows respectively.
(2) Verifi cation Types

4. Features and Positioning of Product

5. Outline of VARVEL

Runtime errors that are generated only under specifi c condi-
tions during program execution, such as NULL pointer deref-
erence or array bounds violation, have usually been detected
by test processes that consist of checking by executing the pro-
gram for several cases. VARVEL makes it possible to detect
runtime errors by means of static verifi cation (verifi cation
without program execution) of the source codes at earlier
stage, instead of by the traditional detection method using the
test process as described above. Since it is generally said that
bugs are hard to fi nd as the process advances and the man-
hours required for returning to the previous process increases
when they are detected in a later process, the early discovery
possibility of VARVEL is expected to improve the effi ciency
of quality assurance.

C-language, the target of VARVEL, is used widely in the em-
bedded software domain because it employs simple language
specifi cations and enables tuning of performance to a deep
level. On the other hand, it also presents a problem, which is
the presence of language elements that tend to cause runtime
errors such as handling pointers and character strings. Since
there are a huge number of combinations that can be taken by
the paths and variables during execution, it is hard for the man-
ual testing alone to detect all of the possible runtime errors in
a practical period and there are not a few cases in which the
problems in the program embedded in a product become clear
after it has been shipped. VARVEL has made it possible to
detect bugs that have been hard to fi nd with the traditional
method, by means of the automatic checking of easily over-
looked run time errors by exhaustively modeling the possible

Table 1 Comparison of CDI tool and VARVEL.

214E.indd 35214E.indd 35 07.6.15 9:58:51 PM07.6.15 9:58:51 PM

36

C-Language Verifi cation Tool Using Formal Methods “VARVEL”
Embedded Software Development Environment Solutions

VARVEL detects four types of runtime errors (called the
verifi cation types). The type can be specifi ed as an option at
the time of command execution (Table 2).
(3) Viewer
The Viewer is provided as an Eclipse plug-in. It makes it
possible to display the position where an error is detected
and the fl ow of the process until the error generation (line
tracing and the variable values at each line) in a merged dis-
play with source codes in order to enable interactive confi r-
mation (Fig. 2).
(4) User-Defi ned Conditions
VARVEL performs exhaustive verifi cation by modeling all
of the possible values because, if the target source code in-
cludes an argument of a function that is the basis of analysis
or there is an external function call without a source code, the
information from the given source code is not enough for
analyzing the argument and return values. In this case, how-
ever, the model becomes larger than necessary, the analysis
time is prolonged, and erroneous detections (detections of
non-bug states as bugs) would increase. To deal with this, if
it is known from the specifi cations that the argument and/or
return value of the function take only specifi ed ranges of val-
ues, the user is allowed to defi ne these conditions before ex-
ecuting the tool as the presupposition for the analysis (these
conditions are referred to as the user-defi ned conditions).
VARVEL inputs the user-defi ned conditions specifi ed at the
same time as the analysis-target source code and builds the
appropriate model.

References

1) NIKKEI ELECTRONICS, 2005/12/19, pp. 87-121.
2) F. Ivancic et al:Model checking C programs using F-Soft. Invited paper in

the Proceedings of the IEEE International Conference on Computer Design
(ICCD), October 2005.

6. Conclusion

Fig. 2　Viewer.

VARVEL as introduced in the above presupposes utilization
in the code verifi cation service targeted inside the NEC Group
and has already started to be applied in the actual development
fi elds. The code verifi cation service is performed by specialist
personnel and consists of checking the quality of developed
software assets and reporting on the check results. The service
has already been used tentatively in several projects and has
achieved results verifying the effectiveness of the tool, by de-
tecting troubles that would not have been detected by ordinary
testing.

In the future, we will improve the tool by perfecting its veri-
fi cation accuracy and by reducing the analysis time and will
eventually incorporate it in the SystemDirector Developer’s
Studio Embedded, which is an integrated development tool for
embedded software. In addition to the above improvements,
we will also enhance the functions for supporting software
quality improvements, for example by adding the Design by
Contract (verifi cation of correct packaging by defi ning the de-
veloper’s design intentions such as pre-/post-conditions and
assertions.

＊ Windows is a registered trademark of Microsoft Corporation in the USA
and other countries.

＊ Linux is a registered trademark or trademark of Linus Torvalds in the USA
and other countries.

＊ Fedora is a trademark of Red Hat, Inc.
＊ Design by Contract is a registered trademark or trademark of Interactive

Software Engineering.

214E.indd 36214E.indd 36 07.6.15 9:58:51 PM07.6.15 9:58:51 PM

37NEC TECHNICAL JOURNAL Vol.2 No.2/2007

Special Issue : Embedded Software and Solutions

Authors' Profi les

TOKUOKA Hiroki
Assistant Manager,
Software Engineering Division,
NEC Corporation

MIYAZAKI Yoshiaki
Manager,
Software Engineering Division,
NEC Corporation

HASHIMOTO Yuusuke
Manager,
Software Engineering Division,
NEC Corporation

214E.indd 37214E.indd 37 07.6.15 9:58:52 PM07.6.15 9:58:52 PM

