34

Embedded Software Development Environment Solutions

C-Language Verification Tool Using Formal

Methods “VARVEL”

TOKUOKA Hiroki, MIYAZAKI Yoshiaki, HASHIMOTO Yuusuke

Abstract

The newly developed C-language verification tool VARVEL utilizes the model checking technology that is one of the formal methods
and detects bugs (runtime errors) that are inherent in programs by modeling the source codes written in C-language and verifying
them statically and exhaustively. This paper is intended to introduce the technical background of VARVEL and outline its functions.

static verification, C-language, formal method, model checking

1. Introduction

The significant increase in the scale of software development
in the embedded domain has meant that the assurance of soft-
ware quality has become an important issue. Among a variety
of development methods and tools proposed for dealing with
this issue, the methods known as the formal methods are at-
tracting particular attention. At NEC, we applied the model
checking technology, which is one of the formal methods, and
developed VARVEL (V 1.0) as a tool for detecting bugs (run-
time errors) that are inherent in programs written in C-lan-

guage.

2. Formal Methods

The formal methods refer generically to techniques based on
logic, set theory and algebra for the specification and verifica-
tion of systems. As a kind of formal method, model checking
is “the technology for thoroughly checking abnormal behavior
of a system that may either be software or hardware by input-
ting its state transition model in a computer,”? and regarded as
the good method capable of early discovery of troubles during
execution. It has initially been used in design verification in
the fields with high reliability and safety requirements, such as
aerospace, communications and semiconductor industries, but
its application into the verification of source codes has been
advanced recently.

NEC laboratories have also been conducting research into
application of a model checking engine that has been proven in
LSI design verification for the verification of source codes?
and VARVEL is one of the achievements of this research (Fig.
1). VARVEL analyzes the source codes in C-language and ex-

tracts control flow that consists exclusively of the parts associ-
ated with runtime errors. It then develops a gigantic logical
formula that represents the transition of variable values in the
control flow and a logical formula that represents each runtime
error and calculates a variable value that satisfies both of the
two formulae by using a model checking engine based on a
highly efficient algorithm for the satisfiability problem (SAT).
The strength of VARVEL lies in the construction of a small-
sized model to compensate for the weakness against state ex-
plosion of model checking and the use of a model-checking
engine of the world’s fastest class. The model-checking engine
performs an exhaustive search of 4.2 billion (2%) value combi-
nations per variable so that it can detect troubles that would be
overlooked with traditional review or test methods.

C-language source files

C-Language Verification Tool VARVEL

void f(int x }{

inta[s], n ; Commands

fcg[(:;?(; n<x; "“')(A it Transition logical formulae (*)
=X ; roxims n
' e P S=1 A nuy=0 A Sy4=2

}]
1 o —— | (" () P 8=2 A n<x A S,4=3
o test program or o | S.=3 An<5A S, =4
test data required [Error] ‘.>§3C=3 A 52:"\(A kSTM:?S\)/
User-defined conditions (optional) (@)t Ll S=4 A =0 H1A Siq=2
Error logic formula (*)
[F(8,=5) |

(*)expressed in bits

Function : f
Precondition:
M, 0<=x8&&x<10

=

Typical C-language
runtime error

Solves logical formulae
by covering all possible
combinations (paths) of
variables and detects
errors.

odel checking enging

& Display of result
list and trace

Fig. 1 C-language verification tool VARVEL.

3. Target of Development

Runtime errors that are generated only under specific condi-
tions during program execution, such as NULL pointer deref-
erence or array bounds violation, have usually been detected
by test processes that consist of checking by executing the pro-
gram for several cases. VARVEL makes it possible to detect
runtime errors by means of static verification (verification
without program execution) of the source codes at earlier
stage, instead of by the traditional detection method using the
test process as described above. Since it is generally said that
bugs are hard to find as the process advances and the man-
hours required for returning to the previous process increases
when they are detected in a later process, the early discovery
possibility of VARVEL is expected to improve the efficiency
of quality assurance.

C-language, the target of VARVEL, is used widely in the em-
bedded software domain because it employs simple language
specifications and enables tuning of performance to a deep
level. On the other hand, it also presents a problem, which is
the presence of language elements that tend to cause runtime
errors such as handling pointers and character strings. Since
there are a huge number of combinations that can be taken by
the paths and variables during execution, it is hard for the man-
ual testing alone to detect all of the possible runtime errors in
a practical period and there are not a few cases in which the
problems in the program embedded in a product become clear
after it has been shipped. VARVEL has made it possible to
detect bugs that have been hard to find with the traditional
method, by means of the automatic checking of easily over-
looked run time errors by exhaustively modeling the possible

Detection of runtime errors
that are hard to find by a code
review or by using limited test
patterns.

Detection of simple bugs, and
descriptions and coding
convention violations that are
hard to maintain and which
lead easily to troubles.

Area closed inside a function.

Area across functions
(including the case in which
they are distributed in multiple
files).

All-inclusive modeling
including variable values.

Syntax check and partial
modeling that is independent
of variable values.

Relatively short. Relatively long.

Mainly used as a tool for code
review after packaging in
order to improve
maintainability and reliability.

Mainly used before the
execution (dynamic) testing
connecting several modules in
order to improve the reliability.

* CDI Tool: Code Inspection Tool.
Table 1 Comparison of CDI tool and VARVEL.

Special Issue : Embedded Software and Solutions

combinations of paths and variable values.

4. Features and Positioning of Product

Currently, the code inspection tools (CDI tools) are used
widely as the static source code verification tools for detecting
descriptions that would cause troubles and the violations of
coding conventions. Table 1 shows the differences between
the CDI tools and VARVEL.

As shown in the table, the two tools have different applica-
tions and purposes, and can be regarded as being in comple-
mentary relationship. VARVEL is not a tool to replace existing
tools. Instead, it is assumed to be combined with an existing
tool as a solution for detecting bugs effectively.

5. Outline of VARVEL

Table 2 shows the main specifications of VARVEL (V 1.0).
(1) Functional Configuration and Operating Environ-
ments

VARVEL is composed of the Command function that inputs
the analysis target C-source code and outputs the verification
result (XML format), and the Viewer function that displays
the verification result output from the Command and sup-
ports the interactive confirmation, analysis and survey. The
operating environments of these functions are Linux and
Windows respectively.

(2) Verification Types

®Tool specifications

C-language source file(s). ISO/IEC 9899:1990(E).
* The compilation environment including the header file should be available.

(Command) Linux (Operation checked with FedoraCore 4)
(Viewer) Windows XP sp2, Eclipse 3.2 or after.

®Verifiable runtime error category

Detection of errors in dereferencing memory area using a pointer.
Dereferencing address 0, released area and illegal area.

Detection of errors in array access. Upper and lower limit access violations
of array bounds.

int arr(10): arr(x) = 100: /IAlarm if suffix x is out of range 0-9.

int *Ip = (int *) malloc(size of (int)):

ip++: *ip = 100; /Alarm

Detection of inconsistency between string length and array size. Buffer
overflow, buffer underflow, strong function usage mistake.
char arr(10):

for (i=0; i<x: i++) strcat(arr;"bc”): //Alarm when x is 6 or more.

Detection of inconsistency between malloc/calloc and free call count.
Memory leak and releasing of non-reserved area (including double release).

Table 2 Main specifications of VARVEL.

NEC TECHNICAL JOURNAL Vol.2 No.2/2007

35

36

Embedded Software Development Environment Solutions
C-Language Verification Tool Using Formal Methods “VARVEL”

[VARVEL Viewer - test.o - Eobpee SOK !.Jig@
IIHE ERE! Retwir TEF-ME WRIE TOPIOHE] MITE TLFOM AT
LS 2 Bi[E AL Ve |
CREER WD W || T et
iE-rens; Dseeswenia) AOef ine ARRAY_S1ZE B

o int datalRRAY_SIZET:
S

STl int =et_weluelint index, int waluel);

int =et_valusslint index, int valus] {

int i: .
if(index » ARRAY SIZE) {

return O;

Ty

e - v s e yokona 1
For(i = 0: i ¢= indexs i++) [
set_valueli, valusl;

return 1:

int set valuelint index, int value) [

] datalindex] = value; |
Y
ks

o IR date 10 + inde Tae.
al 5
A
IR | CobON | WIEHT | @ | e
W Tl oabmx T Suateil Froparty nfile tate o (e 10 Glock 5 Tryng 4 rasd o writs marcry vis an aut-at-bands - 1.

WL ke fe TSEETE Pty e 15665 8 106 18 Tk, EXIL T 0 181 o A, vy o0 1 a1 |
Fig. 2 Viewer.

VARVEL detects four types of runtime errors (called the
verification types). The type can be specified as an option at
the time of command execution (Table 2).

(3) Viewer

The Viewer is provided as an Eclipse plug-in. It makes it
possible to display the position where an error is detected
and the flow of the process until the error generation (line
tracing and the variable values at each line) in a merged dis-
play with source codes in order to enable interactive confir-
mation (Fig. 2).

(4) User-Defined Conditions

VARVEL performs exhaustive verification by modeling all
of the possible values because, if the target source code in-
cludes an argument of a function that is the basis of analysis
or there is an external function call without a source code, the
information from the given source code is not enough for
analyzing the argument and return values. In this case, how-
ever, the model becomes larger than necessary, the analysis
time is prolonged, and erroneous detections (detections of
non-bug states as bugs) would increase. To deal with this, if
it is known from the specifications that the argument and/or
return value of the function take only specified ranges of val-
ues, the user is allowed to define these conditions before ex-
ecuting the tool as the presupposition for the analysis (these
conditions are referred to as the user-defined conditions).
VARVEL inputs the user-defined conditions specified at the
same time as the analysis-target source code and builds the
appropriate model.

VARVEL as introduced in the above presupposes utilization
in the code verification service targeted inside the NEC Group
and has already started to be applied in the actual development
fields. The code verification service is performed by specialist
personnel and consists of checking the quality of developed
software assets and reporting on the check results. The service
has already been used tentatively in several projects and has
achieved results verifying the effectiveness of the tool, by de-
tecting troubles that would not have been detected by ordinary
testing.

In the future, we will improve the tool by perfecting its veri-
fication accuracy and by reducing the analysis time and will
eventually incorporate it in the SystemDirector Developer’s
Studio Embedded, which is an integrated development tool for
embedded software. In addition to the above improvements,
we will also enhance the functions for supporting software
quality improvements, for example by adding the Design by
Contract (verification of correct packaging by defining the de-
veloper’s design intentions such as pre-/post-conditions and
assertions.

* Windows is a registered trademark of Microsoft Corporation in the USA
and other countries.

* Linux is a registered trademark or trademark of Linus Torvalds in the USA
and other countries.

* Fedora is a trademark of Red Hat, Inc.

* Design by Contract is a registered trademark or trademark of Interactive
Software Engineering.

References

1) NIKKEI ELECTRONICS, 2005/12/19, pp. 87-121.

2) F. Ilvancic et al:Model checking C programs using F-Soft. Invited paper in
the Proceedings of the IEEE International Conference on Computer Design
(ICCD), October 2005.

Authors' Profiles

TOKUOKA Hiroki

Assistant Manager,

Software Engineering Division,
NEC Corporation

MIYAZAKI Yoshiaki
Manager,

Software Engineering Division,
NEC Corporation

HASHIMOTO Yuusuke
Manager,

Software Engineering Division,
NEC Corporation

Special Issue : Embedded Software and Solutions

NEC TECHNICAL JOURNAL Vol.2 No.2/2007

37

