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ABSTRACT

Universal Learning Technology: Support Vector Machines
By Vladimir VAPNIK*

*NEC Laboratories America, Inc.

This paper describes the Support Vector Machine (SVM) technology, its relation to the main ideas
of Statistical Learning Theory, and shows a universal nature of SVMs.  It also contains examples

that show a high level of generalization ability of SVMs.
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1. INTRODUCTION

The problem of learning and generalization is one
of the oldest in the natural science. Its discussion
started more than two thousand years ago when phi-
losophers for the first time started to analyze phe-
nomena of Nature. However, in this paper we will
discuss only one classical principle introduced more
than five hundred years ago, the so called Occam
razor principle.

Our main discussion will start from the 1930th
when three important events took place: K. Popper
introduced the necessary condition for generalization,
the so-called principle of non-falsifiability; A. N.
Kolmogorov introduced axiomatization of theory
probability; and statistics; R. Fisher introduced clas-
sical model of applied statistics. Unfortunately the
classical model of applied statistics does not capture
very important situations when one is trying to con-
struct a predictive rule using a restricted number of
examples with a large number of features (learning
from a small number of examples in high dimensional
space).

A model of high dimensional learning is based on
different theory, the so-called Statistical Learning
Theory (or VC theory) that was constructed to over-
come the “curse of dimensionality” of classical statis-
tics.

· Two Models of Learning: Generative Model
and Predictive Model
The basic mathematical model of learning can be

described as follows (see Fig. 1): there exists an object
(say a human being) that can classify observed vec-
tors xi into two categories by indexing them with

(1)

Fig. 1 Basic mathematical model of learning.

(x1, y1), ..., (x , y )

scalar yi that can take only two values 1 and −1. Let
us make an agreement that yi = 1 means that vector xi

belongs to specific category of interest and value
yi = −1 means that it does not belong to such category.

Suppose that Black Box (BB) classifies examples
as follows

The problem is to create a computer program that
using these examples constructs such a rule that clas-
sifies new (unseen) vectors xj approximately as well
as BB.

Example: A doctor examines pictures of
mammograms and classifies corresponding patients
into two categories: patients that have breast cancer
yi = 1 and patients that have no breast cancer yi = −1.
Since the pictures have a digital description xi that
means that doctor defines set (1). The problem is
using a computer to construct such a rule that classi-
fies new (unseen) vectors xj approximately as well as
the doctor (BB) does.

Generative model of learning: The main ques-
tion here is: Which mathematical problem has to
solve the computer to construct a desired decision
rule. The idea of the classical statistics approach is:
Try to recover which rule uses the Black Box to clas-
sify data. Generally speaking, the Black Box
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generates classification yi according to some condi-
tional probability function p(y|x). The classical sta-
tistics suggests to estimate the rule by recovering a
conditional probability function in space of data x.
That means the classical approach is based on recov-
ering Generative Model.

In the 1960s when the first fast computers ap-
peared it was realized that it was very difficult to
estimate conditional probability for the following two
reasons:

1) Description of a probability density function in
high dimension spaces requires a lot of parameters
that should be estimated.

2) Estimating density function is an ill-posed prob-
lem and therefore requires a lot of data (per pa-
rameter) to estimate function reasonably well.

This fact gave a reason to declare a “curse of di-
mensionality” in the classical approach. The methods
of estimating classification rules in high-dimensional
cases required too many examples and therefore
could not be justified within the framework of classi-
cal statistics if the ratio of the number examples to
the number of parameters were small (say less than
10).

Predictive model of learning: Therefore, in the
1970s an alternative approach to the learning based
on Statistical Learning Theory (or the VC theory) was
developed [1,2].

The alternative approach gives up the ambitious
goal to estimate the rule used by the Black Box (the
generative model of data). Instead, it suggests esti-
mating the predictive model from a given set of mod-
els

Statistical Learning Theory suggests choosing
from the set of rules (2) one that minimizes the num-
ber of mis-classifications with the Black Box. It ad-
dress two questions:

1) How to choose from a given set of admissible rules
(2) the best one.

2) How to construct a set of functions that has a
function which approximates Black Box rule well.

In the next section we describe answers to these
questions. In the meantime, let us discuss the differ-
ence between the two settings: the classical one and
SLT.

Suppose that the Black Box uses the following

classification rule: the data that are above the line
(Fig. 2) belong to the class of interest while data
below this line do not.

Consider the separating curve presented on this
figure. This curve is very different from the line that
the Black Box uses. It is not a good estimation of the
Black Box rule. Therefore from the classical point of
view this solution is unacceptable.

However, using this curve one can make predic-
tions that are not much worse than predictions given
by the Black Box rule. Therefore from a Statistical
Learning Theory point of view it is a good approxima-
tion.

A classical solution is more demanding and there-
fore requires more information to be solved well. In
fact, a classical solution requires solving ill posed
problems where among a set of functions that explain
empirical data well one has to find one that approxi-
mates the Black Box function well. Statistical Learn-
ing Theory gives up this ambitious goal by looking for
any rule that makes a good prediction. Therefore, it
can be applied to some problems where classical
methods cannot be used.

Remark: Two approaches used by classical statis-
tics and SLT can be considered as a reflection of two
directions in the Philosophy of Science: Realism and
Instrumentalism. Realism declares that the goal of
Science is to find real law of Nature, while Instru-
mentalism declares that the goal of Science is to cre-
ate instruments for dealing with Nature (in particu-
lar for prediction).

2. STATISTICAL LEARNING THEORY

Statistical Learning Theory provides a complete
answer to the following question: When using obser-
vations (1) one can (in a given set of admissible rules)y=f(x,α), α ∈Λ.

Fig. 2 Classification rule by Black Box.

(2)
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find the rule that guarantees (on unseen test ex-
amples) the smallest number of mis-classifications
with respect to the Black Box rule. In other words,
when one can achieve the generalization.

It was shown that two and only two factors are
responsible for the generalization:

1) How well the chosen decision rule classified the
training data (1).

2) What is the capacity (diversity) of the admissible
set of functions (2) from which the rule was chosen.

That is: ① How many misclassification does the
chosen rule makes on training examples (1). ② How
diverse is a set of admissible functions.

Several concepts of diversity (capacity) of the sets
of functions were introduced that are important for
different mathematical settings of the concept of gen-
eralization. The most important among them are: the
VC entropy that describes generalization for a given
environment and the VC dimension that describes
generalization for all possible environments. In the
Section 2.2 we will introduce the concept of VC di-
mension that plays an important role in SVM theory.
VC dimension is an integer number h and can be
introduced for any set of functions.

Below, using the concept of VC dimension h of
admissible set of functions we will describe the main
results of SLT.

Proposition 1: In order to obtain generalization it
is necessary and sufficient that VC dimension of the
set h of admissible rules be finite.

If VC-dimension is infinite than there exists a rule
that separates training data well and makes a wrong
prediction.

Proposition 2: For any fixed number of training
data  with probability 1 − η the inequality

holds true, where P(test err.) is probability of
misclassification of test examples, Fr(train. err.) is
frequency of misclassification of the training ex-
amples, and Φ(⋅) is the known function of confidence
interval.

This inequality is a basis for creating efficient algo-
rithms.

2.1 Structural Risk Minimization
Inequality (3) inspired the following method of

minimizing probability of the predictive error. Con-
sider the structure defined on the admissible set of

functions f(x, α), α ∈ Λ

where Sh is subset of admissible functions with VC
dimension equal h. Let us choose such subset S* and
such function f(x, α0

*) in this subset that minimize the
right hand side of inequality (3). Such method for
choosing desired function we call Structural Risk
Minimization (SRM) method.

The structural risk minimization method pos-
sesses the following remarkable property:

Proposition 3: Let structure be defined on a suffi-
ciently large set of functions such that the VC dimen-
sion of entire set of functions is infinite. Then SRM
method is strongly universally consistent.

That means that with increasing number of obser-
vation the SRM method converges with probability
one to the best possible solution independent of the
set of function on which the structure was con-
structed.

The SVM technology is a realization of the SRM
principle.

2.2 Definition of the VC Dimension
Consider a set of vectors

(4)

If vectors (4) are in general position, there exist
exactly 2  different ways to divide this set into two
subsets.

We say that vectors (4) cannot falsify a set of indi-
cator functions f(z, α),α ∈ Λ if all 2  separations of (4)
are possible by this set of indicators.

Definition: A set of indicator functions f(z, α), α ∈
Λ has VC dimension h if:

· There exist h vectors that cannot falsify this set.
· Any h + 1 vectors falsify this set.

Figure 3 shown that three vectors do not falsify
set of lines in a plain and any four vectors falsify. The
VC dimension of the set of line is three.

Remark: VC dimension is a mathematical reflec-
tion of K. Popper concept of non-falsifiability which in
the philosophy of Science is considered as a necessary
condition for the generalization.

2.3 Occam’s Razor or Non-Falsifiability
According to VC theory the necessary and suffi-

cient conditions of generalization for methods that
minimize the number of training errors depend on

P(test err.) ≤ Fr(train. err.) + Φ
h


−1nη
,(       )

S1 ∈.... ∈Sn

x1, ..., x  .

(3)
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how diverse the set of function was from which one
chooses a desired solution. It requires controlling the
VC dimension.

A classical statistics approach inspired by Occam
razor principle:

· Entities (features) should not be multiplied beyond
necessity.

requires to control the number of parameters.
Since the value of VC dimension (but not the num-

ber of parameters) forms the necessary and sufficient
conditions and defines the generalization bounds for
the predictive learning (see Proposition 1 and Propo-
sition 2) the crucial question is:

· Does VC dimension coincides with the number of
free parameters?

The answer is no. VC dimension can coincide with
the number of free parameters of a set of admissible
functions, can be much larger than the number of free
parameters, or can be much smaller. The last case
has important (both theoretical and practical) impli-
cations. In a set of functions with large (even infinite)
number of free parameters, but with small VC dimen-
sion one can obtain a good generalization (since ac-
cording to Proposition 2 the generalization depends
on VC dimension). In such situations, one can achieve
in high dimensional cases good generalization using
not too large number of examples.

Therefore, it is very important to describe a set of
functions where the VC dimension is much smaller
than the number of parameters. It so happens that
such set of functions can be constructed based on the

set of linear functions.

2.4 Large Margin Hyperplanes
Let us consider the set of separating hyperplanes

(5)

where x ∈ Rn belongs to the n dimensional space, w is
a n dimensional vector of free parameters, b is a
scalar, and sign(u) is an indicator function: it equals 1
if u ≥ 0 and equals −1 if u < 0. Therefore, the set of
function (5) has n + 1 free parameters. One can prove
that VC dimension of such set of functions equals n +
1 (coincides with the number of free parameters).

Now let us consider a set of hyperplanes separat-
ing data with the margin equals ∆

(6)

Here value y = 1 if

y = −1 if

and y = 0 (or undefined) otherwise.
Proposition 4: Suppose that |x| ≤ R then the VC

dimension of the set of separating hyperplane with
the margin ∆ has a bound

(7)

where min{a, b} is the smallest value from these two.
Note that if ∆ is sufficiently small, the VC dimen-

sion of ∆ margin separating hyperplanes coincides
with the VC dimension of the set of separating hyper-
planes and equals the number of free parameters n +
1.

If the margin is large, the VC dimension can be
much smaller than the number of free parameters.
We will use this fact to construct SVMs.

3. MAIN IDEAS OF SVMs

To construct large margin separating rules we will
act in opposite to the Occam razor recommendation.
We will increase the number of free parameters. We
will map n dimensional input vectors x ∈ Xn in a
Hilbert (infinite) dimensional space z ∈ Z∞

Fig. 3 Three vectors do not falsify set of lines in a
plain and any four vectors falsify.

y=sign{(w,x)+b}

y=sign∆{(w,x)+b}

(w,x)+b≥∆,

(w,x)+b<−∆,

x → z

h ≤ min                      +1R2

 , n
∆2{      }
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creating from the training set (1) a new training set

(8)

Then we will construct ∆-margin separating hyper-
plane in space Z.

Let our data be bounded by the value R. Without
restriction of generality we assume that R = 1. In this
case (according to Proposition 4) the VC dimension of
the set of linear (in Z space) ∆-margin classifiers

is bounded by the value h ≤ 1/∆2, if equality

holds true. By choosing the value of margin ∆, one can
control the VC dimension of the admissible set. To
minimize the guarantee error bound (3) one has to
choose from the set of ∆ margin separating hyper-
planes one with the smallest number of training er-
rors.

This idea leads to a simple optimization problem:
Minimize the functional

(9)

(where C is a constant that defines h) subject to con-
straints

(10)

This problem has a simple solution: The optimal ∆-
margin separating hyperplane (in Z space) has a form

(11)

where αi
0 i = 1, ...,  is the solution of the following

optimization quadratic optimization problem. Maxi-
mize the positive definite quadratic form

(12)

subject to box constraints

(13)

and one equality constraint

R =              α i −              α i α j yi yj( zi ,zj)
1
—
2 Σ

i,j
Σ
i=1

Σ
i=1

(14)

3.1 Kernel Trick
In the previous section we described the solution to

the classification problems in high dimension input
space X. We mapped our input vectors even in higher
dimensional space Z and constructed in this space the
large margin separating hyperplane.

The idea was that in high dimensional image space
Z, the ratio of the radius of the sphere to the value of
the margin can be chosen to be small. This will imply
a small VC dimension and this (but not the dimen-
sionality of the space) guarantees a good generaliza-
tion.

However, in a form (11) - (14) the obtained solution
is non-constructive. It requires explicit mapping vec-
tors xi into Z space and calculating in this space inner
products between two vectors. Note however that im-
age vectors zi appear in both equations only in inner
products. This makes it possible to calculate the inner
product without constructing image vectors z. The
following remarkable proposition (due to Mercer,
1909) holds true.

Proposition 5: Let vectors x ∈ X be mapping into
elements z ∈ Z of a Hilbert space H

(15)

and let (zi, zj) be an inner product of elements zj and zj

of space H. Then
· For any mapping (15) there exists positive definite

(PD) function* K(x, x*) such that

(16)

· For any PD function K(xi, xj) there exists a map-
ping (15) that (16) holds.
According to this proposition mapping is com-

pletely equivalent to the choice of positive definite
kernel function K(xi, xj) which we also call a similarity
measure. Note, that one can choose appropriate simi-
larity measure without any knowledge about a corre-
sponding mapping (15).

Using similarity measure kernel K(xi, xj) one can

(y1, z1), ..., (y , z )

y=sign{(w, z)+b}

(w,w) = 1/∆2

R =  (w,w) + C       ξ iΣ
i=1

yi((w,z)+b)≥ 1−ξ i,       i=1, ..., 

y = sign        yiα i (zi, zj) + bΣ
i=1

[        ]0

 yi α i =0Σ
i=1

x → z

(zi, zj) = K (xi, xj) .

0 ≤ α i ≤ C,   1=1, ..., *Function K(x, x*) is called positive definite if for any x1,
..., x  the determinant of the Gram matrix is non-negative.

K (xi, xj) ≥ 0,   i=1, ..., , j=1, ...,
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rewrite equations (11)-(14) in the following construc-
tive form. The optimal ∆-margin separating hyper-
plane (in Z space) has a form

(17)

where α i
0 , i = 1, ...,  is the solution of the following

quadratic optimization problem. Maximize the posi-
tive definite quadratic form

(18)

subject to box constraints (13) and one equality con-
straint (14).

Examples of two popular kernels are:
Polynomial kernel of degree d:

Exponential kernel:

Note that different similarity measures specify dif-
ferent coefficients in equations. They do not change
equations. Therefore, SVMs form universal generali-
zation method. They use the same equations for dif-
ferent real life problems. Depending on specific simi-
larity measure they can be applied to any learning
problem of interest (say such as stock market predic-
tion, or medical diagnostics, or prediction of elements
of weather). Specific similarity measure is choosing
for the problem of interest and the construction of a
rule is based the same method of solving equations
that does not depend on similarity measure.

It is very important to note that similarity mea-
sure can be constructed not only for vectorial input
spaces X. It can be constructed for abstract elements.
This fact is playing important role in many applica-
tions (such as text analysis or bioinformatics).

3.2 Properties of SVMs
SVMs possess the following remarkable proper-

ties:

1) They always converge to the best possible solu-
tions.
SVMs execute the SRM minimization inductive
principle, which is strongly universally consistent
(see Proposition 3). Its structure is defined by dif-

ferent values of ∆-margin in Hilbert (infinite di-
mensional) space. Therefore one can construct set
of ∆-margin separating hyperspace with any VC
dimension.

2) They minimize guarantee bounds (3) for a finite
number of observations.
SVMs were constructed to minimize right hand
side of inequality (3), which requires one to con-
struct ∆-margin separating hyperplane with a
large margin.

3) They have a standard way to incorporate
singularities of real-life problems using appropri-
ate similarity measure K(xi, xj) between two vec-
tors xi, xj.

4) The similarity measure can be defined for
nonvectorial data (e.g. chemical formulas, or po-
etry texts, or political situations).

5) They have a universal generalization engine
(simple QP solver).

6) They construct non-linear decision rules using lin-
ear technology.

Combinations of these properties is unique in ap-
plied analysis.

It was shown in many empirical studies that SVMs
generalization engine possesses the state-of-the-art
generalization properties in solving real life prob-
lems.

Below we describe results of applying the SVM
generalization engine to the problem of classification
of proteins into 56 classes [3] and compare this classi-
fication with other methods. In Fig. 4, the x-axes

K (xi, xj) = [1+(xi, xj)] d

K (xi, xj) =exp  , 0 ≤ q ≤ 2xi − xjσ{ − |      |
q

}

Fig. 4 Comparison of the classical bioinformatics al-
gorithms.

y = sign        yiα i  K (xi, xj) + b[          ]0Σ
i=1

1
—
2

R =              α i −               α i α j y i yjK ( xi,xj)Σ
i,j

Σ
i=1

Σ
i=1
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define the value of ROC score (a measure that defines
precision of classification; the best precision gives
score equal to 1). The y-axes define how many classes
is classified with ROC score that is not worse than x.

The ideal outcome is defined by the line y = y(x) = 1
for all 0 ≤ x ≤ 1.

Figure 4 compares the classical bioinformatics al-
gorithms with one that uses the SVM generalization
engine. Input for algorithms is strings of (possible)
different size that characterize proteins. Output is
number of class.

All algorithms depend on two concepts: appropri-
ate similarity measure for two strings (called align-
ment score in bioinformatics literature) and generali-
zation engine. For example knn-SW means k-nearest
neighbor generalization method and SW similarity
measure or SVM-SW means SVM generalization en-
gine SW similarity measure. Figure 4 shows a big
advantage of the SVM over other methods used.

4. TRANSDUCTIVE INFERENCE

Statistical Learning Theory considers two distinc-
tive types of inferences: inductive, and transductive
[1,2].

The goal of transductive inference is to estimate
the values of an unknown predictive function at a
given point of interest (but not in the whole domain of
its definition). The point is that, by solving less de-
manding problems, one can achieve more accurate
solutions. A general theory of transduction was devel-
oped where it was shown that the bounds of generali-
zation for transductive inference are better than the
corresponding bounds for inductive inference[2].

1) Prediction of molecular bioactivity for drug
discovery[4].
The CUP-2001 competition on data analysis meth-

ods required the construction of a rule for predicting
molecular bioactivity using data given by the DuPont
Pharmaceutical Company. The data belonged to a
binary 139,351 dimensional space, which contained a
training set of 1,909 vectors, and a test set of 634
vectors.

Below the results are given for the winner of the
competition (among 119 competitors that used tradi-
tional approaches), SVM-inductive inference and
SVM transductive inference.

· Winner’s accuracy 68.1%
· SVM inductive mode accuracy 74.5%
· SVM transductive mode accuracy 82.3%

It is remarkable that the jump in performance
obtained due to a new philosophy of inference
(transductive instead of inductive) was larger than
the jump resulting from the reinforcement of the tech-
nology in construction of inductive predictive rules.

2) Text categorization[5].
In the text categorization problem the replacement

of inductive inference by transductive inference re-
duced the error rate from 30% to 15%.

Remark: The discovery of transductive inference
and its advantage over inductive inference is not just
a technical achievement, but a breakthrough in the
philosophy of generalization.

Until now, the traditional method of inference was
the inductive-deductive method, where using avail-
able information one defines a general rule first, and
then using this rule deduces the answer one needs.
That is, first one goes from particular to general and
then from general to particular.

In the transductive mode one provides direct infer-
ence from particular to particular, avoiding the
illposed part of the inference problem (inference from
particular to general).

5. CONCLUSION

The construction of SVMs solved important prob-
lems of machine intelligence: creation of a universal
generalization engine that possesses high perfor-
mance and can be used for solving different learning
problems.

With the creation of SVMs it became clear that
problems of learning contain different components
not just generalization. It includes problem of choice
of similarity measure, choice of appropriate invari-
ants, and many others. It was also shown that the
existence duality - similarity measure in input space
and separating hyperplane in image (mapping) space
— allows solving such problems within the frame-
work of SVMs.

Recently, a discussion started about creating “cog-
nitive computers,” that can interact with customers,
learn from customer and Internet patterns of behav-
ior, and learn to perform intelligent tasks. In such
computers, one of the blocks should be a universal
generalization engine. SVMs can be considered as a
good candidate for such a block.
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