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ABSTRACT

It becomes increasingly important to detect intrusions with unknown patterns in order to protect

our business from cyber terrorism threats. This paper introduces data mining technologies
designed for this purpose; SmartSifter (outlier detection engine), ChangeFinder (change-point detection engine),
AccessTracer (anomalous behavior detection engine). All of them are able to learn statistical patterns of logs
adaptively and to detect intrusions as statistical anomalies relative to the learned patterns. We briefly overview
the principles of these engines and illustrate their applications to network intrusion detection, worm detection,

and masquerader detection.
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1. INTRODUCTION

In recent years, intrusion detection technologies
are indispensable for network/computer security as
the threat of cyber terrorism becomes a serious mat-
ter year by year. Most of conventional technologies
such as IDS (Intrusion Detection Systems) take a
signature-based approach to it, in which a number of
human-made rules describing computer worm/virus
of known patterns are constructed and an alarm is
made when a record matching one of the rules ap-
pears. The signature-based approach suffers from the
following two critical issues: 1) it is not able to detect
worms/virus of unknown types, and 2) it requires a lot
of computation time for signature matching.

Meanwhile, we may employ a policy-based ap-
proach in order to detect unknown computer worms/
virus. In it a general security policy is constructed
and an alarm is made when some record violates the
policy. However, it is not able to detect new computer
worm/virus in case they eventually satisfy the policy.

Data mining-based anomaly detection is a kind of
technology for detecting computer worms/virus of un-
known patterns more adaptively and effectively than
signature-based and policy-based ones. This is to
learn statistical regularities from past examples and
to detect worms/virus as anomalies which are largely
deviated from the learned regularities.

The authors have recently developed the following
three data mining engines for the purpose of anomaly
detection:
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1) Outlier detection engine: SmartSifter[2,3,6]

2) Change-point detection engine: ChangeFinder[4]

3) Anomalous behavior detection engine: Access-
Tracer[7]

SmartSifter detects intrusions as statistical outli-
ers. ChangeFinder detects the emergence of computer
worms/virus by tracking a change point in a time
series of log data. AccessTracer detects masquerad-
ers’ activities by tracking anomalous behaviors in a
session stream such as a series of UNIX commands.
They were all designed in order to realize “security
intelligence[10]” which can be thought of as addi-
tional value for NEC’s security solution.

The purpose of this paper is to give a brief overview
of the three engines with their applications to real
domains.

The rest of this paper is organized as follows: Sec-
tion 2 introduces SmartSifter with its applications to
intrusion detection. Section 3 introduces Change-
Finder with its applications to worm detection. Sec-
tion 4 introduces AccessTracer with its applications
to masquerade detection. Section 5 gives concluding
remarks.

2. OUTLIER DETECTION ENGINE: SmartSifter

The basic principle of SmartSifter is to learn a
statistical model of the data generation mechanism
from past examples and then to calculate an anomaly
score for each datum, with high score indicating high
possibility of its being an outlier. We expect that we
can detect intrusion data efficiently by investigating
only data of high scores, thereby drastically reduce
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the total cost of investigation for detecting new
worms/virus.

2.1 Outlier Detection Process

In this subsection, according to references [2] and
[5], we show how SmartSifter works by describing the
details of its “statistical model,” “learning,” and “scor-
ing.”

(1) Statistical Model

Log data may be represented by a multi-
dimensional data where some attributes are discrete
variables (e.g., service type, IP address, etc.) while
others are continuous ones (time, duration, source
bytes, etc.) SmartSifter employs a histogram density
for a statistical model for discrete variables and a
Gaussian mixture model for that for continuous ones.
Here a Gaussian mixture model takes a form of a
linear combination of a finite number of Gaussian
distributions (See Fig. 1). SmartSifter constructs a
statistical model of log data by combining the histo-
gram density with the Gaussian mixture model under
the assumption that data is independently identically
distributed.

(2) Learning

SmartSifter learns the parameters of the statisti-
cal model from examples in an on-line manner, using
our original on-line discounting learning algo-
rithm[2]. This algorithm estimates the parameters of
the statistical model by forgetting out-of-date statis-
tics gradually every time a datum is input. It makes
the learning adaptive to the change of the log pat-
terns.

(3) Scoring

SmartSifter gives a score for each datum, which is
calculated as the Shannon information of the data
i.e., the information quantity of the data relative to
the model learned so far. The higher the score of a
datum is, with the higher possibility it is an outlier.

SmartSifter has the following novel features:

1) Adaptiveness: It detects outliers adaptively to the
change of distributions of logs. As a result, it real-
izes adaptive intrusion detection.

2) Efficiency: It realizes on-line real-time outlier de-
tection with low computational complexity.

3) High Accuracy: It is able to detect unknown types
of intrusion, and thereby achieves high accuracy of
intrusion detection, as illustrated below.
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For example, consider the problem of detecting a
DoS (Denial of Services) attack called Back (see, e.g.,
[11]), which is an attack for security holes in Apache
(web server program). Since it tends to send a large
amount of data to the server, the associated logs may
be detected as statistical outliers. We have also em-
pirically demonstrated that scanning activities and
worms such as CodeRed and Slammer can be de-
tected as statistical outliers. Note here that outliers
that SmartSifter detects are not always true intru-
sions but rather may cause false alarms. It is an
important issue how to tune SmartSifter in order to
reduce the false alarm rates as much as possible in
real domains.

We applied SmartSifter to a benchmark dataset
called KDDCup99[11] in order to demonstrate its ef-
fectiveness in network intrusion detection prob-
lems[6]. We utilized three attributes (duration,
src_bytes, dst_bytes), all of which are continuous
ones. Here “src_byte” means the data amount sent to
the server while “dst_byte” means the data amount
received by the server. In our experiments, we used
500 thousands records that successfully logged in,
0.35% of which (= 1700 records) were intrusions.

Figure 2 shows how well SmartSifter was able to
detect intrusions. The vertical axis shows the cover-
age of intrusions, i.e., the ratio of the number of
detected intrusions over the total number of intru-
sions, while the horizontal axis shows the extraction
rate, i.e., the ratio of the total number of data ex-
tracted for investigation over the total number of
records. For example, x% in the horizontal axis
means that the records of top x% highest scores are
extracted. The real line shows the performance of
SmartSifter, while the dot one shows that of Burge &
Shawe-Taylor’s method[1], which is also known to be
an on-line outlier detection engine.

We observe that SmartSifter significantly outper-
forms Burge & Shawe-Taylor’s method in terms of the
coverage. Specifically, SmartSifter requires only 5%
records in order to detect 80% of the intrusions while
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Fig.1 Principle of SmartSifter.



random search requires 80% data in order to detect
the same number of intrusions. This implies that
SmartSifter can drastically reduce the search cost of
intrusions.

Figure 3 shows the user interface of SmartSifter.
It displays the distribution of data with respect to
specified attributes and where data of high scores are
located.

2.2 Intrusion Knowledge Generation

Once SmartSifter detects outliers, we are inter-
ested in generating a rule which explains their pat-
terns. We may call such a rule an outlier-filtering
rule. For example, it is written in a form of “If-then-
else” type rule, as follows:

If “src_byte<9.688 & flag=SF” then normal
else if “service=http” then outlier
else normal

1700 data
100 p— -
SmartSifter Sores by BS
N “" | Burge&Shawe-Taylor |
coverage{ 9 A
60 Detected 80% intrusions |+
§ | intop 5§ % data
@l j E |

Only 24,000 data are required
while random test requires

400,000 data

0 - =T Too

Extraction Rate (%) BTt

Fig. 2 Intrusion detection using SmartSifter.
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Fig. 3 User interface of SmartSifter.
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Generating such outlier-filtering rules is impor-
tant in the following two regards:

1) It explicitly explains why the groups of outliers
that SmartSifter detects are exceptional.

2) It can be used for preprocessing of SmartSifter for
new data, in order to achieve higher accuracy for
outlier detection.

We have developed a method for automatically
generating outlier-filtering rules on the basis of su-
pervised learning technique. Figure 4 shows the flow
of this method. The basic principle is shown below.

Once data are given scores by SmartSifter, then we
give positive labels to data of high scores and negative
labels to the data sampled randomly from the remain-
ing dataset. Here the numbers of positive labeled
data and negative ones are pre-determined. Then we
learn a classification rule which discriminates from
the positive labeled data from the negative one, where
we employ a supervised learning algorithm using the
information criterion called ESC (Extended Stochas-
tic Complexity) as a rule selection criterion[3,5]. Once
arule is generated, it is used for filtering outliers for a
new data set. This process is repeated every time a
new data set is added into the system.

Note that the resulting rule may possibly capture a
pattern of a specific type of intrusions and produce
new security knowledge. For example, the “If-then-
else” type rule above shown, which was generated for
KDDCup99 by our system, characterizes the features
of the attack called Back. This implies that our sys-
tem was able to automatically produce the knowledge
about Back.
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Scoring
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* = low scored data
L Supervised Learning

Rule Genetation

Fig. 4 Outlier-filtering rule generation proc-
ess.
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We may use outlier-filtering rules with Smart-
Sifter in the manner as shown in Fig. 4 to enhance the
outlier-detection power of SmartSifter. It is demon-
strated in the reference [3] that for KDDCup99
dataset, combining SmartSifter with outlier-filtering
rules achieved more than 50% higher coverage than
SmartSifter itself.

3. CHANGE-POINT DETECTION ENGINE:
ChangeFinder

A computer worm or virus may often appear
burstly rather than point-wise. In fact, when a new
type of worm emerges, the number of access logs
tends to suddenly increase. The technology of on-line
change-point detection is expected to be effective in
detecting computer worms/virus having such a prop-
erty as early as possible. Here the goal of on-line
change-point detection is to detect the earliest time
point when the nature of time series has significantly
changed. ChangeFinder is designed to conduct this
function efficiently. Note that SmartSifter cannot be
applied to change-point detection since it cannot deal
with time series models but rather independent mod-
els only.

ChangeFinder has basically the same principle as
SmartSifter in that both of them learn a statistical
model adaptively from data and give a score to each
datum on the basis of the learned model. The differ-
ence between them is that ChangeFinder further em-
ploys the technique of 2 stage learning through
smoothing. According to the reference [4], the details
of this technique are summarized below.

(1) First Stage of Learning and Scoring

ChangeFinder employs as a statistical model a
time series model called an auto-regression (AR)
model and learns it from data using the on-line dis-
counting learning algorithm [4] every time a datum is
input. Then it calculates an anomaly score for each
time point as the Shannon information of the datum
relative to the model learned so far.

(2) Smoothing

ChangeFinder prepares a window of a fixed size
and constructs a time series of moving averages of the
anomaly scores for the data points by sliding the
window. Here the moving average is taken over all
the data points included in the window.

(3) Second Stage of Learning and Scoring

ChangeFinder employs another AR model and
learns it from the time series of the moving-averaged
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scores. Then it calculates a change-point score for
each time point as the Shannon information of the
moving-averaged score at the point relative to the
model learned so far.

For example, ChangeFinder is effective in detect-
ing the DoS attack called SYN Flood, since it tends to
make bursty TCP-incomplete connections using mas-
queraded IDs and cause traffic concentration.

Figure 5 shows an example of applications of
ChangeFinder to detecting a computer worm called
MS Blast. The figure shows a time series of access
frequencies at port 135 and a change-point score
curve. We observe that there are two distinct peaks in
the change-point curve, all of which correspond to the
earliest stages of the real emergence of MS Blast. It
was actually reported that MS Blast emerged in two
steps. Further note that ChangeFinder conducts the
change-point detection in real-time, with computa-
tion time of order O(nk2) where n is the sample size
and k is the dimension of a datum. This implies that
ChangeFinder is quite effective in detecting the emer-
gence of computer worms as early as possible.

4. ANOMALOUS BEHAVIOR DETECTION EN-
GINE: AccessTracer

In previous sections we were concerned with the
issue of how anomalous an individual data point is. In
other words, SmartSifter and ChangeFinder were de-
signed to detect local anomalies in a data set. How-
ever, there are some situations where it is required to
detect global dynamics of anomalies, such as anoma-
lous behavior patterns, in a set of time series. Access-
Tracer is designed to detect such a type of anomalies.
For example, it can be applied to detecting masquer-
aders’ behavior patterns from UNIX command
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Fig. 5 Worm detection using ChangeFinder.



histories and detecting intrusion patterns such as
Trojan horses from a sequence of system calls.

For a given time series, we divide it into a number
of subsequences, each of which is called a session.
AccessTracer takes as input a session stream and
learns a statistical model of behavior patterns from it.
Then it detects an anomalous behavior and identifies
what a new behavior pattern is generated. Below we
give a brief sketch of the principle of AccessTracer
according to the reference [7].

(1) Statistical Model

AccessTracer employs as a statistical model of be-
havior patterns a mixture of hidden Markov models
(HMMs), which is a linear combination of HMMs
where each HMM represents a behavior pattern and
the number of mixture components represents the
number of distinct behavior patterns. For example, a
mixture of HMMs is used for the representation of
UNIX users’ command history.

(2) Learning

AccessTracer learns the mixture of HMMs using
the on-line discounting learning algorithm[7] every
time a session is input. It learns not only the param-
eter values of the model but also the optimal number
of mixture components. Hence it can track the change
of number of behavior patterns over time. This is
conducted on the basis of the theory of dynamic model
selection developed in the reference [8] (See Fig. 6).

(3) Scoring

AccessTracer calculates an anomaly score for each
session as the universal hypothesis test statistics,
which can be thought of as an extension of Shannon-
information for data-scoring to session-scoring. The
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Fig. 6 Masquerade detection using Access-
Tracer.
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higher the score is, the higher possibility of being an
anomalous session it has. A session of locally highest
score corresponds to the onset of an anomalous ses-
sion stream.

(4) Behavior Pattern Identification

In the process of dynamically tracking the change
of the number of mixture components, its increase
implies that a new behavior pattern has emerged
while its decrease implies that an existing behavior
pattern has disappeared. AccessTracer does not only
track the changes but also identifies what a mixture
component has newly emerged or disappeared. For
example, when learning from a UNIX command ses-
sion stream, the number of command patterns may be
increased after a masquerader comes into action.
Hence detecting such a change leads to the masquer-
ade detection and identifying a new mixture compo-
nent leads to the understanding of a masquerader’s
behavior pattern.

Figure 7 shows the user interface of AccessTracer
and illustrates how it analyzes users’ UNIX com-
mand stream. We divided an original sequence of
UNIX commands into a number of sessions, each of
which consists of 10 commands, to form a session
stream. The horizontal axis shows the session num-
ber, and the two graphs are shown in the upper-side
of the display. One is a graph of anomaly score for
sessions and the other is a graph of the optimal num-
ber of mixture components in the mixture of HMMs.
In the lower-side of the display, there are shown clus-
ters of command patterns, each of which corresponds
to a component of the mixture model. For each com-
mand pattern, a list of typical commands with high
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Fig.7 User interface of AcccessTracer.
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frequencies, a list of typical transitions with high
probabilities, and data belonging to the cluster are
displayed.

We evaluated AccessTracer using a benchmark
data set collected by Schonlau et al.[12] in order to
demonstrate its effectiveness in masquerade detec-
tion using UNIX command streams. We have re-
ported in the reference [7] that AccessTracer was able
to reduce the false alarm rate more than 50% in
comparison with the Naive Bayes method, which was
proven to perform best to date[9]. Furthermore it was
proven in the reference [8] that AccessTracer was
able to successfully identify a specific command pat-
tern of a masquerader in a comprehensive form. This
implies that AccessTracer is effective in
masquerader’s pattern identification as well as mas-
querader detection.

5. CONCLUDING REMARKS

This paper overviewed the three data-mining
based anomaly detection engines: Outlier detection
engine SmartSifter, change-point detection engine
ChangeFinder, and anomalous behavior detection en-
gine AccessTracer. All of them were designed for the
purpose of effectively and efficiently detecting secu-
rity incidents of unknown types such as unknown
worms, viruses, masquerades, etc. We expect that
they would be more effective if they were used in
combination with existing security products such as
firewalls and IDSs.

The features of the three engines are their
adaptiveness and real-time performance. These en-
gines would also be applied to a wide range of areas
other than security, including activity monitoring,
fraud detection in finance, medical sciences, etc.

REFERENCES

[1] P. Burge and J. Shawe-Taylor, “Detecting cellular fraud
using adaptive prototypes,” in Proceedings of Al Ap-
proaches to Fraud Detection and Risk Management,
pp.9-13, 1997.

(2]

(8]

[l

(10]
[11]

[12]

K. Yamanishi, J. Takeuchi, et al., “On-line Unsupervised
Oultlier Detection Using Finite Mixtures with Discount-
ing Learning Algorithms,” Data Mining and Knowledge
Discovery Journal, 8, 3, pp:275-300, Kluwer Academic
Publishers, May 2004.

K. Yamanishi and J. Takeuchi, “Discovering outlier fil-
tering rules from unlabeled data,” in Proceedings of the
Seventh ACM SIGKDD International Conference on
Data Mining and Knowledge Discovery, ACM Press,
pp-389-394, 2001.

K. Yamanishi and J. Takeuchi, “A Unifying Approach to
Detecting Outliers and Change-Points from Non station-
ary Data,” in Proceedings of the Eighth ACM SIGKDD
International Conference on Data Mining and Knowledge
Discovery, ACM Press, pp.676-681, 2002.

K. Yamanishi, “Data and Text Mining,” Iwanami Statisti-
cal Science Frontiers, Series 10 Cp.179-242, 2003 (in
Japanese).

J. Takeuchi and K. Yamanishi, “Experimental Evalua-
tion of Outlier Detection Engine SmartSifter,” in Pro-
ceedings of the 23rd Symposium on Information Theory
and Its Applications, pp.419-422, 2000 (in Japanese).

Y. Matsunaga and K. Yamanishi, “An Information-
theoretic Approach to Detecting Anomalous Behaviors,”
in Proceedings of the 2nd Forum on Information Tech-
nologies (Information Technology Letter), pp.123-124,
2003 (in Japanese).

Y. Maruyama and K. Yamanishi, “Dynamic Model Selec-
tion with Its Applications to Computer Security,” in Pro-
ceedings of IEEE Information Theory Workshop, 2004
(http://ee-wcl.tamu.edu/itw2004/program.html).

R. A. Maxion and T. N. Townsend, “Masquerade detec-
tion using truncated command lines,” in Proceedings of
Int. Conf. on Dependable Systems and Networks, pp.219-
228, 2002.

http://www.labs.nec.co.jp/DTmining/
http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html

http://www.research.att.com/~schonlau

Received December 1, 2004

68 NEC J.of Adv. Tech., Winter 2005



Kenji YAMANISHI received M.E. degree from
the University of Tokyo in 1987. He joined
NEC Corporation in 1987, and is now a Re-
search Fellow of Internet Systems Research
Laboratories. He received Dr.Eng. degree from
University of Tokyo in 1992. He worked for
NEC Research Institute in USA as a visiting scientist from
1992 to 1995. He is engaged in research and development of
data mining technologies. He authored a chapter “Data and
Text Mining” of the book “Statistics of Language and Psychol-
ogy” published by Iwanami publishers.

Dr. Yamanishi is a member of IEEE, ACM, IEICE, SITA,
and JSAL

Jun-ichi TAKEUCHTI received the B.Sc. degree
in physics and the Dr.Eng. degree in math-
ematical engineering from the University of
Tokyo in 1989 and 1996, respectively. He
joined NEC Corporation in 1989, where he is
4 currently a Principal Researcher in Internet
Systems Research Laboratories. From 1996 to 1997 he was a
Visiting Research Scholar at Department of Statistics, Yale
University. His research interest includes machine learning
and data mining.

Dr. Takeuchi is a member of IEEE, IEICE, SITA, and
JSIAM.

Special Issue on Security for Network Society

Yuko MARUYAMA (maiden name: Yuko
Matsunaga) received the B.E. degree and the
M.E. degree in mathematical engineering from
the University of Tokyo in 2000 and 2002, re-
spectively. She joined NEC Corporation in
2002, where she is currently a researcher in
Internet Systems Research Laboratories. Her research inter-
est includes Shannon theory, coding theory, machine learning,
and data mining.

fock o ok ko sk ok sk sk ok sk sk ok sk ok K

NEC Journal of Advanced Technology, Vol. 2, No. 1 69



