
Special Issue

NEC Journal of Advanced Technology, Vol. 1, No. 3 205

Advanced Technologies and Solutions toward Ubiquitous Network Society

ABSTRACT

Integrated Service Navigation Framework for
Ubiquitous Networking
By Toshio TONOUCHI,* Norihito FUJITA,† Naoto MAEDA,*
Tomohiro IGAKURA* and Yoshiaki KIRIHA†

A huge amount of service components will soon be deployed to ubiquitous networks. Each will
provide a simple service, but compositions of service components are expected to be highly valuable

to users, because it is hard for users to find and combine adequate service components. We are developing a
service navigation architecture in which a composite service is assembled from service components
autonomously. We point out four issues to be addressed in the architecture: autonomy, efficiency, security, and
reliability. In our architecture, these issues are handled by integrating management of applications and the
management of networks. In this paper, we explain the technologies we are developing for this integrated
management.

KEYWORDS Service composition, Policy-based service management, Overlay network, Policy conflict

*Internet Systems Research Laboratories
†System Platforms Research Laboratories

1. INTRODUCTION

Ubiquitous networks are maturing. Cellular
phones with Internet access, PDAs, and wireless
LANs are becoming popular. About ten years ago,
Weiser developed an original PDA called ‘Tab’ and
invented a proprietary protocol for wireless communi-
cation[1].

Ubiquitous networks connect with a huge number
of nodes including tiny sensors and large size of infor-
mation appliances, and, by 2010, the number of nodes
in these networks is expected to reach ten billion in
2010[2].

Each node, such as a sensor or a network-
connected air-conditioner, provides only a simple ser-
vice. For example, an air conditioner with network
access function can be turned on and off, or set to hold
a specific room temperature by a remote user. A col-
lection of cooperating services is more useful than the
set of independent services. A cellular phone with a
GPS (Global Positioning System), for example, can
autonomously give the location of the remote user to
his network-connected air conditioner, enabling the
air-conditioner to be turned on autonomously when
the user comes near his house (Fig. 1). In this ex-
ample, the requirement of the user is that “the room

temperature should be 27°C whenever I am in the
room.” This requirement could be satisfied by having
the air-conditioner run continuously and always keep
the room temperature at 27°C, but this would be
wasteful. The user would find it more economical to
have his mobile phone, a home server at his house,
and his air-conditioner collaborate with each other to
satisfy the requirement.

The WSFL (Web Service Flow Language)[3] is a
workflow language used for building functional collec-
tion of web-service components. The user who wants
to receive a service satisfying his requirements must
write a workflow in WSFL. That is, he needs to select

Fig. 1 Example of collaboration of service
components.

NEC J. of Adv. Tech., Summer 2004

Special Issue

206

some of them and specify their interactions. It is
difficult, however, for most users to specify workflows
because a huge number of components are available
and the most effective collection for any given purpose
is not easy to find. An autonomic process assembling
the appropriate components without human inter-
vention would be extremely useful.

We are, therefore, developing a new service navi-
gation framework in which a suitable workflow is
autonomously generated in accordance with the
user’s requirements is generated automatically and
in which the user is directed to the service provided
with that workflow. This paper clarifies the issues of
the service navigation framework and reports the
current status of our work.

2. HISTORY OF DISTRIBUTED COMPUTING:
FROM CENTRALIZED COMPUTING TO AU-
TONOMIC SERVICE COLLABORATION

Figure 2 shows the history and expected near-
term future of the distributed computing architec-
ture. By 1980, a centralized computing architecture
had become popular because computing resources,
such as CPUs, were very expensive. Users shared a
huge expensive computer. At that time, the efficient
use of computer resources was more important than
the human operation’s environment.

As computer resources became less expensive, pro-
gramming costs became more significant. In other
words, the cost of human resources became more im-
portant than the cost of computing resources. Object-
oriented technology, easily mapping objects in real
world to objects in the programming world, became
popular because it reduced programming costs. It
also virtualized computer resources because it sepa-
rated the objects in the programming world from the

computer resources. That is, the computer resources
on which an object is running can be placed in a
different computer, but the object running on those
resources virtually placed at the same computing re-
source. In other words, a client/server computing ar-
chitecture: the virtual object on the different com-
puter is a server, and the invoker of the virtual object
is a client. This is called an RPC (Remote Procedure
Call).

Definition methods of the interfaces of server ob-
jects and a protocol between a client and a server
need to be standardized because these standardiza-
tions enhance the reusability of server objects. The
most well known standardization of RPC is the
CORBA (Common Object Request Broker Architec-
ture), in which server objects are regarded as service
components placed in a distributed environment.

Another popular client/server architecture is
WWW. People noticed the necessity of RPC in the
Internet because of the success of WWW. The conven-
tional RPC, such as CORBA, implicitly assumes LAN
because it does not consider the existence of firewalls.
The IIOP, a standardized protocol of CORBA, cannot
go through a firewall. The way to provide Internet-
wide RPC is to use a web service technology. Its
transport is HTTP, SMTP or some other protocols
that goes through firewalls. In 1999 and 2000, SOA
(Service-Oriented Architecture), in which services are
implemented by collection of web-service components,
was proposed.

These client/server architectures inherently as-
sume that servers always stay and work. In the ubiq-
uitous network environment, however, service compo-
nents including sensors may be placed temporarily
and may be temporarily removed. As a result, clients
cannot expect that any given server is always run-
ning.

Suitable collection of service components may,
therefore, change from one time to another. This
means that we need an autonomic service navigation
technology that assembles collections of service com-
ponents in accordance with the load on or running
states of service components and in accordance with
network traffic.

An architecture providing the autonomic service
navigation uses a broker server that has the specifi-
cations of service components and that has informa-
tion about the running states of service components.
When it receives a request packet with user’s require-
ments, it checks its store of specifications and run-
ning states, identifies an appropriate collection of
components, and generates a collaboration sequence
satisfying the user’s requirements.Fig. 2 Trend of distributed computing.

NEC Journal of Advanced Technology, Vol. 1, No. 3

Integrated Service Navigation Framework for Ubiquitous Networking

207

3. ISSUES IN AUTONOMIOUS SERVICE NAVI-
GATION TECHONOLOGY

There are four issues in the autonomic service
navigation technology.

The first issue in autonomic service navigation
technology is finding a set of service components and
generating a service collaboration that satisfies the
user’s requirements.

The service components in a collection assembled
autonomously need to have machine-readable specifi-
cations because the broker assembling the collection
has to know what the components are. Specifications
should include the syntax of the interfaces of service
components and the semantics of service components.
The WSDL (Web-service Definition Language)[4] can
define the interfaces of service components, but the
semantics of a service component are beyond the
scope of WSDL.

The standardizations of service components are
progressing in some standardization organizations or
some consortiums, and one example of their work is
the NGOSS (New Generation Operations Systems
and Software) proposed by TMF (Tele-Management
Forum)[5]. In NGOSS, service components in a Tele-
Management field are standardized. Service compo-
nents will be more reusable when these standardiza-
tions become popular.

For standardized components, the specifications
and the semantics of components are clear. We as-
sume the broker will be able to know these specifica-
tions. We are currently using an in-house specifica-
tion method, because, now, there is still no adequate
and widespread specification method.

The second issue is the efficiency of the autono-
mous collection process. A huge number of service
components will be distributed in coming ubiquitous
networks. Better standardizations of service compo-
nents will greatly increase the possibility of their
combinations of service components in functional col-
lection. Because the broker finds a collection dynami-
cally, it must find it in a short time.

The third issue is the security of the communica-
tion between the user’s node and the service compo-
nents. Users could not trust composite services if
others were able to tap this communication or issue
counterfeit packets. In our service navigation frame-
work, components are dynamically found, and the
network path among them is also determined dy-
namically. We have been developing a technology to
set a secure communication path dynamically.

The fourth issue is reliability. Autonomic service
composition proceeds without human intervention, so

reliability is more important in autonomic systems
than in normal human-controlled systems. The com-
position is decided by a set of specifications of each
service component, and the administrator of each
component gives its specifications. Reliability thus
depends on how to guarantee correct specifications.
Specifications may change when the service compo-
nent is updated, and they may be conflict with the
existing specifications. A different administrator
manages each service component, and it is difficult
for one administrator to know what specifications
another administrator defines. This results in poten-
tial conflicts, and decreases reliability.

A tool that finds pairs of potentially conflicting
policies is, therefore, needed. Administrators can
know potential conflicts with this tool, and they can
correct policies.

4. SERVICE NAVIGATION PLATFORM ARCHI-
TECTURE

4.1 Overview
Figure 3 shows our service navigation architec-

ture, which has two technologies: an “Autonomic Ser-
vice Control Technology” and a “Network Service
Control Technology.” The autonomic service control
technology provides the function needed for the auto-
nomic assembly of collaborations of service compo-
nents (Fig. 4). The network service control technology
provides network resource allocation suitable to those
composite composed services.

In the autonomic service control technologies,
there is an application router in the whole system.
Each service component is assumed to have its ser-
vice specification. A user issues his request packet
including his requirements to the application router.
The application router collects service specifications
beforehand. When it receives the request, it compares
the user’s requirements with a set of service specifica-
tions. The application router has a policy engine run-
ning in the background. The application router de-
cides how and what components are composed. The
policy engine considers the requirements and the
specifications as policies and processes them effi-
ciently.

The network service control technology supports
the service navigation platform architecture to satisfy
nonfunctional requirements while the autonomic ser-
vice management technology satisfies the functional
requirement. An example of a nonfunctional require-
ment is a response time. A user requires that the
response should return within five seconds. To satisfy
these requirements, the service navigation platform

NEC J. of Adv. Tech., Summer 2004

Special Issue

208

has to know the loads of service components and the
network traffic between the components. It also has
to choose service components and network paths in
the view of resource usage. It has to choose idle com-
ponents and a path with light traffic so that it avoids
bottlenecks.

Another example of non-functional requirements is
security. A lot of cases of service compositions require

secret communication because security is the most
important issue in some services. In service naviga-
tion platform, information about the network is gath-
ered as resource information with a certain protocol.
This information includes whether or not a network
path is secure. For example, a path in the Internet is
not secure or a path in a leased line is secure. The
application router decides a path according to this

Fig. 3 Service navigation platform architecture.

Fig. 4 Autonomic service collaboration.

NEC Journal of Advanced Technology, Vol. 1, No. 3

Integrated Service Navigation Framework for Ubiquitous Networking

209

information.

4.2 Solutions to Issues
This section gives solutions we are now studying to

the four issues counted up in Section 3.
We explain our autonomic service collaboration,

which is a partial solution to the first issue, through
an example. Assume that a user wants to find news
articles related to the English keyword “informed con-
sent.” A Japanese user wants articles written in
Japanese. We can write this requirement as
“Lang=Eng Keyword=‘informed consent’ | Article=*
Lang=Jpn.”

We assume that there are an English article
search service component, a Japanese article search
service component, and an English-to-Japanese
translation service component.

The specification of the English article search ser-
vice component may be “Keyword=* Lang=Eng | Ar-
ticle=‘*’ Lang=Eng.” This means that the service ac-
cepts any keyword (Keyword=*) as an input. The in-
put (i.e., Keyword) is written in English (Lang=Eng).
The term on the right-hand side of the “|” specifies a
reply message. The service component returns an
“Article” (Article!=*) written in English (Lang!=Eng)
as a search result. The specification of a Japanese
article search service component is “Keyword=*
Lang=Jpn | Lang=Jpn,” and the specification of the
translation service component may be “Lang=Eng |
Lang=Jpn.” The application router knows these speci-
fications because it has collected them beforehand.
The application router decides a suitable composition,
for example “the English article search service com-
ponent → the translation service component” or “the
translation service → the Japanese article search
component.” We describe in Section 5.1 how these
specifications and user’s requirements are handled.

Consider now the second issue. As mentioned in
Section 1, the number of nodes in ubiquitous net-
works is expected to reach ten billions by 2010. Be-
cause the number of possible collections of service
components will be considerably huge, the policy en-
gine must be a high-performance one. The Google
search site manages six billions of items[6]. It can
search them by a keyword search, and it can find out
about thousands of indexes of contents. The applica-
tion router may search these found indexes and re-
sults in a service composition. The policy engine run-
ning in the background of the application router must
handle such a large number of contents in real time.
The policy engine manages these contents by using
the index mechanism described in Section 5.1.

A solution to the third issue is a mechanism for

dynamic overlay network deployment technology.
The service navigation framework has to decide dy-
namically which part of the network is to be secret
because the composition of collaborative service is
decided dynamically. Both nodes of an IPSec path
must be configured consistently. This consistent con-
figuration is bothersome. Our framework uses the
DNS (Domain Name Server) protocol. Nodes on both
sides of the IPSec path query the DNS server, and the
DNS server replies to all of them with IPSec param-
eters. The DNS server can distributes consistent pa-
rameters to the nodes on the both sides. The dynamic
overlay network technology is described in Section
5.2.

A solution to the fourth issue is the policy conflict
detection technology we are now developing. We de-
fine conflict between policies as follows: when an
event occurs, more than one policy is triggered and
they perform inconsistent operations on one managed
object. In the service navigation architecture, an
event is a user request, and policies are specifica-
tions. Two services may be invoked when a user is-
sues a request, and two policies may invoke the same
service component with different arguments. This can
result in inconsistency because the result depends on
which policy is invoked first. The policy conflict detec-
tion technology can be adapted to an off-line com-
mand that finds possibility of conflicts. Our policy
conflict technology is described in Section 5.3.

We have developed other technologies to complete
the service navigation architecture. The network/
computer resource information and user contexts are
useful for efficient resource usage and find adequate
service compositions. The context management plat-
form technology collects contexts from various kinds
of sensors, and translates them into a uniform syn-
tax. For example, a position can be measured with
RFID tag readers or with the GPS. The platform
manages position data in the same syntax, and appli-
cations using position data need not care what kind of
sensors are the source of that data.

The dynamic overlay network technology makes a
closed network with the IPSec. If you put a cache in
the closed network and if the cache is related to the
users in the closed network, it will be efficient. The
ubiquitous data management technology in Fig. 3
tries efficient cache management in ubiquitous net-
work.

Because the number of nodes in ubiquitous net-
works is expected to increase greatly, the number of
contexts is expected to become huge. Our large-
capacity search technology provides an efficient
search method for searching a huge number of

NEC J. of Adv. Tech., Summer 2004

Special Issue

210

contexts. Sets of contexts are assumed to have inher-
ently data dependency. Aware of the dependencies,
you can divide the contexts into independent sets of
contexts. And by focusing on the first set, the search
can become more efficient.

Because a huge number of contexts go through
networks, fast networks are required. High-speed
network technology provides fast layer-2 switches.

5. TECHONOLOGIES

5.1 Autonomic Service Collaboration with Policy
In the service navigation architecture, the policy

engine running in the background of the application
router processes a user request as a router in accor-
dance with the specifications of service components,
which are considered as policies.

Figure 5 shows the architecture of a policy-based
management system. A policy engine manages poli-
cies. It accepts events that represent a user request
and then decides action or workflow in accordance
with the policies represented by the specifications.

5.1.1 Policy Language
In our policy language, an event is assumed to be

written as a set of properties such as “key=data.”
The syntax of policy is composed of three parts, the

first of which is an accept pattern. A policy only ac-
cepts events that have the properties required by the
accept pattern. The second part is an action indicat-
ing a service component that is invoked when the
policy accepts an event. The third part is a rule for
modifying the output messages. An event accepted by
the policy is modified in accordance with the modifica-
tion rule, and the modified event is then accepted by
another policy (if its accept pattern matches the
event).

Consider an example in which “A=a, B=b | actionA
| D=d.” “A=a, B=b” is an accept pattern and “D=d” is
a modification rule. If an event consisting of “A=a,
B=b, C=c” is sent to the policy engine, the policy is
activated. That is, actionA is executed, the event is
then modified according modification rule, and the
modified event of “C=c, D=d” is sent to the policy
engine again.

Notice that the syntax of the policy language is
similar to the syntax of the specifications in Section
4.2. The application router translates the specifica-
tions into policies, and sends the policies into the
policy engine.

5.1.2 Techniques for Efficient Policy Processing
The larger a system becomes, the more policies are

needed and the more events occur. In addition, the
more policies there are, the more time is spent to
search for a policy matching an event. So, we have
therefore developed two techniques speeding up
searching policies: “policy transition” and “event
modification history.”

Whether policies are activated depends on the
state of the system. When some service stops, for
example, policies that use the service must not be
activated. That is, the policy engine can skip invoca-
tion check for some policies because they will be never
activated in a certain state of the system. The “policy
transition” is a mechanism to restrict the search area
of policies. In the policy transition, certain policies
become triggers changing a set of policies that can be
activated. We call the set of these policies an active
policy set. For example, first, a set of policy A, B, are
C is an active policy set. If A accepts an event then
policy B and C are no longer elements of an active
policy set, and a set of policy D and E becomes an
active policy set.

Policy’s output messages are modified from the
accepted events in accordance with the “modification
pattern” of the policy, and the output messages are
accepted by another policy whose accept pattern
matches the message. A policy that did not accept a
certain event cannot accept the event unless the prop-
erties of the event that does not match the accept
pattern changes. That is, it is omissible to check
whether the policy can accept the event. This tech-
nique is “event modification history.”

In our test, the “event modification history”
doubled the speed of policy searches.

5.2 ML-DNS: Dynamic Overlay Network Deploy-
ment

In ubiquitous networks, various services are

Fig. 5 Service collaboration with policy en-
gine.

NEC Journal of Advanced Technology, Vol. 1, No. 3

Integrated Service Navigation Framework for Ubiquitous Networking

211

dynamically created by combining multiple service
components. Because of security concerns, such as
data/privacy protection, some services should be pro-
vided not on public networks but on closed networks.
In such secure services, user nodes can use a service
by participating in a closed network associated with
the service. Thus, while the closed networks dynami-
cally emerge/disappear, their participating nodes
change on an ad hoc basis. We define a group forming
such a closed network as a collaborative group. A
promising approach to create a closed network is to
use existing VPN (Virtual Private Network) tech-
niques, which can deploy closed networks over public
networks on an overlay basis. However, since previ-
ous approaches provide overlay networks in a
preconfigured fashion[7], however, they cannot sup-
port the dynamic properties of collaborative groups.

We propose a scheme to deploy overlay networks
for collaborative groups on an on-demand basis. Fig-
ure 6 shows our system architecture. The system is
composed of a private DNS (Domain Name System)
server and a plug-in module installed on each mem-
ber node terminal. An overlay network is provided by
these two modules for each collaborative group. The
private DNS server provides management
functionalities for overlay networks. To deploy an
overlay network for a group, all the service providers
have to do is to configure the membership and domain
name space of the group. Other miscellaneous con-
figurations (e.g. IP address assignment) are gener-
ated automatically in the private DNS server. After
this simple configuration, each member can ask to

participate in the closed network through the login
client in the plug-in module. If the login request is
accepted, the private DNS server assigns to the mem-
ber node an inner IP address, a private domain name
and an X.509 certificate. The certificate is signed by
the CA (Certificate Authority) server and is used for
authentication both in establishing a control channel
(TCP/SSL) with the private DNS server and in estab-
lishing IPsec tunnels with other member nodes. In
the private DNS server, when a member logs in/logs
out, the authentication server module dynamically
updates the inner IP address for the domain name
assigned to the member. The DNS server module
provides a functionality to resolve the IPsec policy
(notice that “IPSec policy” is not different from the
“policy” in Section 5.1) in an overlay network. To
achieve this functionality, the base IP address (i.e.,
the IP address assigned in the underlying network) is
also registered as the resource record for the inner IP
address through the dynamic update. The DNS proxy
in the plug-in module performs IPsec policy resolu-
tion as well as normal DNS resolution for domain
names associated with the group via the control chan-
nel established with the private DNS sever. Since the
policy resolution is performed on an on-demand basis,
the private DNS server does not have to distribute
the updated IPsec policy for each membership change
in the group. Each member node can communicate
with other nodes by establishing IPsec tunnels based
on the resolved IPsec policy. In communication with
other nodes, the IPsec driver encapsulates and en-
crypts IP packets using the IPsec ESP mode[8]. Our

Fig. 6 Proposed system architecture.

NEC J. of Adv. Tech., Summer 2004

Special Issue

212

approach thus creates a layer-3 overlay network.
To maintain an overlay topology created by IPsec

tunnels, our system supports two operation modes: (i)
mesh mode and (ii) graph mode, as shown in Fig. 7.
The mesh mode is a straightforward approach, in
which IPsec tunnels are directly established as vir-
tual links between nodes. To improve system
scalability, our approach creates not a fully-meshed
topology but a partially-meshed topology in which
IPsec tunnels are established only between nodes in-
volved in actual communication. The on-demand-
based IPsec policy resolution requires no tunnel
initiation/teardown for changes in the number of par-
ticipating nodes, which reduces the impact of mem-
bership changes. The mesh mode is well suited for a
group either in which a small number of nodes par-
ticipate or whose duration is relatively short because
of its simplicity. On the contrary, for a large-scale
group collaboration, in contrast, the graph mode illus-
trated in Fig. 7 (ii) provides good scalability because
the number of tunnels maintained at each node is
always independent of the number of participating
nodes. In the graph mode, the graph-structured topol-
ogy among member nodes is automatically created
and is reconfigured for each change in the number of
nodes. Packets are transferred over the graph on a
hop-by-hop basis instead of over a directly estab-
lished IPsec tunnel. In choosing a topology creation
algorithm to be deployed, the following should be
taken into account in terms: the number of hops be-
tween nodes (diameter) and the number of tunnels
maintained by a node (degree). We have developed an
algorithm that provides a minimized diameter with a
fixed degree in Reference [9]. It also reconfigures a
topology with a small number of initiated/torn-down
tunnels for changes in the number of participating
nodes.

5.3 Detection and Resolution of Policy Conflicts
Without tools to check the consistency of policies, it

is extremely difficult for system managers to create
policies for controlling the behavior of managed dis-
tributed systems in the way that ensure reliability.
We have developed a method for detecting and resolv-
ing the conflicts between policies whose actions may
involve concurrent access to the same managed ob-
ject, such as a router or a process running on a server.
Such policies can result in an unexpected problem in
a managed system.

Figure 8 shows an overview of our method. The
static analysis detects all sets of policies that hold
conditions below:

1) There is a shared target that appears in the action
clause of the policies.

2) There are one or more actions that have side ef-
fects on the shared target.

3) The policies might possibly be executed at the
same time.

These policies may conflict each other in terms of
concurrent processing. Therefore, the policy engine,
which interprets policies and controls the behavior of
a managed object, should sequentially execute ac-
tions of the policies holding above conditions. In our
method, given policies are first subjected to a static
analysis. The analytical result then is sent to the
policy engine, which enforces policies by referring to
the analytical result. The policy engine concurrently
executes actions of the policies that are not included
in the same policy set in the result and sequentially

Fig. 7 Two topology operation mode topolo-
gies.

Fig. 8 Overview of our method for detecting
and resolving policy conflicts.

NEC Journal of Advanced Technology, Vol. 1, No. 3

Integrated Service Navigation Framework for Ubiquitous Networking

213

executes the other policies.
Our method thus allows the policy engine to ex-

ecute policies safely and efficiently.

6. CONCLUSION

This paper has described our service navigation
architecture and shown technologies supporting it.
These technologies are now under study, and we are
trying to combine them to implement the service
navigation architecture.

ACKNOWLEDGMENTS

This work is supported by Ministry of Public Man-
agement, Home Affairs, Posts and Telecommunica-
tions.

REFERENCES

[1] M. Weiser, “Some Computer Science Issues in Ubiquitous
Computing,” Communication of the ACM, 36, 7, pp.74-84,
July 1993.

[2] T. Shinohara, “Ubiquitous Network, Japanese-model
Electronic Commerce and Challenges to Sustainable De-
velopment,” OECD FORUM 2001, 2001, http://
www1.oecd.org/forum2001/briefings/speeches/shinohara-
01.PDF

[3] F. Leymann, “Web Services Flow Language (WSFL 1.0),”
May 2001, http://www-4.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf

[4] E. Christensen, F. Curbera, et al., “Web Services Descrip-
tion Language (WSDL) 1.1,” W3C Note 15, March 2001.

[5] TM Forum, “NGOSSTM Technology Neutral Architec-
ture v4.0 - TMF053,” Feb. 2004.

[6] Ubiquitous Forum, “Annual Report 2002,” 2002.
[7] Google Press Release, “Google Achieves Search Milestone

with Immediate Access to More Than 6 Billion Items,” 17
Feb., 2004.

[8] D. Kosiur, “Building and Managing Virtual Private Net-
works,” published by Wiley, ISBN 0-471-29526-4, 1998.

[9] S. Kent and R. Atkinson, “IP Encapsulating Security
Payload (ESP),” RFC2406, Nov. 1998.

[10] T. Koide, et al., “A Topology Construction Algorithm for
Peer-to-peer-based Layer 2 Virtual Networks,” IEICE So-
ciety Conference, Sep. 2004 (To appear).

* * * * * * * * * * * * * * *

Received July 26, 2004

Toshio TONOUCHI received his masters de-
gree in information science at the Faculty of
Science, University of Tokyo in 1992. He has
worked in NEC Corporation since 1992. He
worked on OSI management platforms and on
development processes and tools for the plat-

forms. He was a visitor at the Department of Computing,
Imperial College, UK in 2000-2001, and he studied policy-
based management, there. His research interest is now in
applying policy-based management to ubiquitous networks
and grid systems.

Norihito FUJITA was born in Tokyo, Japan, in
1973. He received his B.E. and M.E. degrees in
electrical engineering from Kyoto University,
Japan, in 1996 and 1998, respectively. He
joined NEC Corporation in 1998 and is Assis-
tant Manager at the System Platforms Re-

search Laboratories, NEC Corporation, Kanagawa, Japan. His
current research interests include dynamic deployment and
management of virtual networks and application-aware rout-
ing control in computer networks.

Mr. Fujita is a member of the IEICE.

Naoto MAEDA received his M. Eng. degree in
information science from Waseda University
in 1999. He joined NEC Corporation in 1999
and worked mainly on the design and imple-
mentation of mobile agent systems from 1999
until 2002. His current research interests in-

clude the detection and resolution of policy conflicts in policy-
based management, design and implementation of static rule
checkers for Java programs and software verifications.

Tomohiro IGAKURA received his M. Eng. de-
gree in electronics engineering from Tokyo
University in 1999. He joined NEC Corpora-
tion in 1999 and until 2002 worked mainly on
the research of network management from
1999 to 2002. His current research interests

include policy-based management architecture and detection
of wrong (against intention) policies.

Yoshiaki KIRIHA received his B.E. and M.E.
degrees in electronic communication engineer-
ing from Waseda University in 1985 and 1987,
respectively. He joined NEC Corporation in
1987, and is now a senior manager of the Sys-
tem Platforms Research Laboratories. He has

been engaged in the research and development of network
management systems, realtime database systems, distributed
computing systems, active networking systems, and ubiqui-
tous networking systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [609.449 793.701]
>> setpagedevice

