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BACKGROUND

The development of therapeutic cancer vaccines to immunize against tumor antigens constitutes a promising modality. Mutation-associated antigens are

considered major targets given their specificity to tumor cells. These mutations are specific to the patients and require tailor-made vaccines targeting the

corresponding tumor-specific epitopes. Many mutations are identified in the tumoral genome in most patients, but only a small fraction (around 1%) is

suitable as vaccine target. Herein, we report data documenting the prediction performance of the algorithm used for the design of TG4050, a clinical stage

patient specific viral-based neoantigen vaccine.

@TransgeneSAwww.transgene.fr

● The prediction system presented herein is able to identify

immunogenic epitopes among a large number of candidate

neoepitopes identified in patients with high accuracy.

● More than 86% of top ranked epitopes are immunogenic.

● Immunogenicity of predicted epitopes is correlated with their

ranking by the prediction system

● The prediction system was able to select highly immunogenic

peptides that were not highly ranked by state-of-the-art methods

(netMHCpan 4.0).
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DESIGN AND TRAINING OF PREDICTION SYSTEM

METHODS 

Study design

We collected tumoral and peripheral blood samples from patients diagnosed with Non-Small Cell

Lung Cancer (NSCLC) who were eligible for surgical resection. Blood samples were processed by

centrifugation on Ficoll density gradient to isolate PBMC prior to cryostorage. Tumor samples were

rapidly snap frozen on liquid nitrogen upon collection.

Sequencing

Germlines sequences were obtained by WES of PBMC. Tumoral sequences were obtained by

WES of tumor DNA. RNA sequencing of tumor samples was also performed for confirmation of

expression of tumor genes and evaluation of abundance of mutated transcripts.

Peptides

Peptides corresponding to targets mutation were synthesized and used for stimulation of

autologous PBMC. We first tested pools of 6 peptides batched based on their ranking by the

immunogenicity prediction system and then deconvoluted immunogenicity of individual peptides.

Assessment of immunogenicity

Immunogenicity was assessed by counting of IFN-γ secreting cells in patient PBMC after

restimulation with peptides encoded by the mutated sequence. Briefly, patient PBMC sample were

thawed, exposed to 1 µg/ml of peptide or media (negative control) for 6 hours. After exposure to

peptides, cells were washed and incubated with anti-CD3, anti-CD8 and anti-IFN-γ antibodies

conjugated with fluorescent probes. Assessment of frequency of antigen specific IFN-γ secreting

CD8+ T-cells was performed by flow cytometry (see gating strategy).

WES + RNAseq

WES

NSCLC 

tumors

PBMC

Ranking of mutations detected in the patient: A ranked
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RESULTS

SEQUENCING AND MUTATIONAL PROFILES
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Accordingly to data reported in the literature,

mutational burden of NSCLC patients was

relatively high with a median of 4217 (3339-

4782) somatic mutations identified. After

filtering using GATK-Broad Institute Best

practice recommendations, a median of 484

(316-756) mutations remained. These

translated into a median of 316 (201-521)

non synonymous mutations of which a

median of 281 (192-471) was confirmed at

RNA level.

HLA A02:01

Gating for the identification of CD3+CD8+IFN-γ+ cells in patient PBMC.

Antigen specific induction of IFN-γ in patient PBMC: on left panel: responses in individual

patients for peptide pools, pool composition was based on the peptide ranking with our

prediction system (Pool 1: top 6 peptides, pool 2: #7 to #12, pool 3: #13 to #18, pool 4:

#19 to #24 and pool 5: pool of low ranked peptides as control for non selected peptide);

On right panel, deconvolution of responses for individual peptides in pool 1. Red dotted

line: assay background noise.
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NEC Ranking

Comparison of ranking using our NEC ranking system and MHC binding

prediction + RNA filtering for peptides selected in pool #1 for all patients.

In green, highly immunogenic peptides as assessed by frequency of

CD8+IFN-γ+ cells (>2% of positive cells) and in red, peptides with low

immunogenicity (<1% of positive cells). Dotted blue line : top 5 peptides

NEC cut-off; Dotted orange line: top 5 peptides cut-off netMHC.

No sample

material

Venn Diagram of immunogenic peptides ranked

within the top 5 for NEC prediction system and

netMHC + RNA filter.
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HLA A03:01

Logo plot of peptides selected by the NEC system from tested patients for two common HLA

genotypes. Preferred positions are consistent with known HLA-restricted epitopes.

IMMUNOGENICITY OF PREDICTED PEPTIDES

● Niepert M et al., Proceedings of the 33 rd International Conference on Machine Learning, 2016

● Vita R et al., Nucleic Acids Res. 2015

● Jurtz V et al., The Journal of Immunology, 2015
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CONCLUSIONS 

Bioinformatics – Variant calling, MHC typing, and candidate neoantigen identification

We developed a bioinformatics pipeline to identify somatic variants (mutations and indels) from

matching healthy and tumor WES samples following best practices. We then extracted all candidate

9-mer peptides which overlap all variants. The healthy WES was further used to identify the Class-I

MHC type of the sample.

Machine learning – MHC binding, processing, and immunogenicity

We trained a set of independent machine learning algorithms to score peptides for several steps of

the MHC antigen presentation pathway, including MHC binding, intracellular processing, and

likelihood to elicit an immune response. These models are then used to make predictions for each

candidate neoantigen accounting for the identified MHC alleles of the sample.

Ranking candidate neoantigens - Graph neural network and diversity

In order to rank the candidate neoantigens and determine the vaccine contents, we trained a graph

neural network to combine the predictions with sample-specific factors, including expression and

conservation of the candidate across clones based on tumor RNA-seq. A final module combined the

score with a diversity criterion to create a final ranking of the candidate neoantigens.
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