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Abstract

Crack development in concrete structures starts at the

micro-crack stage and proceeds to the macro-crack stage

due to repeated cyclic loading, like ongoing vehicles on

bridges. Automatic detection of early stage cracks is re-

quired for both safety and economic reasons. We present

an automatic crack detection method that scans a cap-

tured concrete area and provides a pixel-wise localization

of both visible macro-cracks and early stage micro-cracks

from video sequences. The key component in the proposed

method is a spatial-temporal non-linear filtering on frame-

wise dense 2D motion field combined with Conditional Ran-

dom Fields based crack localization refinement. We eval-

uate our method against labeled ground truth data pro-

vided by an expert crack inspector. Experimental results

show that our method can produce high accuracy auto-

matic crack localization having F1 score improvement of

0.14-0.22 compared to conventional image based detectors.

The proposed method is also shown to detect cracks at an

earlier stage which enables early preventive measures for

repair operations.

1. Introduction

Many concrete structures like roads, bridges etc. are

subjected to repeated cyclic loadings which result in fa-

tigue in these structures. Fatigue loading causes structural

failures in the form of cracks. Research on fatigue load-

ing of concrete structures [5, 6, 13, 16] suggest that crack

development starts with micro-cracks and then propagates

to macro-crack stage due to repeated cyclic loading. Ulti-

mately after a finite number of loading cycles, the structure

fails and is considered unsafe for use. This process of crack

growth in real concrete is demonstrated in figure 1. Success-

ful detection of early stage cracks is very important to en-

Figure 1: Showing growth of cracks from early stage with

1000 cycles to severe stage with 20,000 cycles. Micro-

cracks (shown by yellow circles) are not easy to find in early

stage. Images are enhanced for ease of viewing.

sure the safety of concrete structures. Such early detections

could help predict future deteriorations, reduce investments

by scheduling repairs at early stage and facilitate optimal

scheduling of limited repair and maintenance resources.

In this work, we focus our study on bridge surfaces since

ensuring safety of bridges is extremely important because

of its daily usage by general public. Failure to detect dam-

age in bridges may lead to disastrous accidents which might

cause loss of life. Typically, cracks in bridges are monitored

by certified inspectors and structural engineers by manu-

ally inspecting the bridge site. Such procedures are often
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slow and expensive because it requires setting up of scaf-

foldings, close inspection of each part of the bridge surface

and stopping traffic on the bridge. Due to these reasons,

automatic detection of cracks are gaining importance in the

recent times.

Traditionally, crack detection algorithms proposed in lit-

erature are single image based methods. A survey by Koch

et al. [11] gives a summary of recent computer vision based

crack detection methods in reinforced concrete bridges, pre-

cast concrete tunnels, underground concrete pipes, and as-

phalt pavements. Some methods in literatures for solv-

ing this problem include measuring texture anisotropy [17],

continuous wavelet transform based crack labeling of pix-

els [20], preprocessing images for noise removal to enhance

crack localization response [4]. Percolation-based image

processing techniques [22, 23] which considers connectiv-

ity of cracks for superior performance have also been de-

veloped. Patch based methods [7, 8, 21] which partition

the image into small patches and assign binary labels to

patches have also been proposed. A method for morpho-

logical transformations based crack candidate retrieval and

subsequent crack detection by learning geometrical features

of cracks was proposed by Jahanshahi et al. [10]. It extracts

well designed features from each patch and train a Support

Vector Machine (SVM) classifier to judge whether a patch

is a crack or not. An image processing toolbox for crack

detection was released by [14], which performs a compre-

hensive set of image processing algorithms for detection

and characterization of pavement cracks. Recently Convo-

lutional Neural Network (CNN) based crack classification

combined with spatial-temporal grouping based refinement

was proposed by Schmugge et al. [19] which labeled if a

particular image has crack or not and provided coarse crack

localization.

Although conventional methods attempt to find cracks

from a single image, it is not suited for detecting micro-

cracks. This is because early stage micro-cracks are not

visible without load applied to concrete as shown in figure

2 and it is difficult to automatically capture images when

load is applied above the bridge. Thus we propose crack de-

tection from videos captured when the concerned concrete

is under active dynamic loading. For example, videos cap-

tured from bottom surface of a bridge during regular traffic

might be used for crack detection.

A simple way of detecting cracks from videos is to apply

single image based methods directly to the image frames.

However, detecting micro-cracks using "single image only"

based detectors poses several problems. Firstly, as already

mentioned, micro-cracks are visible only under load. This

requires choosing frames where all cracks are visible in

a single frame, which is difficult to obtain automatically.

Secondly, even if we assume micro-cracks are visible in a

frame, their width is typically sub-pixel level which makes

(a) Micro-cracks not visible in

frame

(b) Micro-cracks visible in

frame

Figure 2: (a) Micro-cracks not visible without loading (b)

Cracks become visible when there is loading above the re-

gion being captured. This illustrates the need for spatial-

temporal analysis for micro-crack detection. Images are en-

hanced for better viewing.

differentiating them from noisy structures such as scratches,

concrete textures, weldings etc. even more difficult. Fur-

thermore for machine learning methods, a huge amount of

labeled training data is required for good generalization per-

formance for crack detection in the wild. This is because

concrete structures present large variation in appearance,

texture, crack patterns, lighting conditions, loading condi-

tion and other factors. Obtaining sufficient labeled image

data with all possible variations might be a time consuming

and expensive process.

A popular method for image based strain detection from

digital images in the field of civil and mechanical engineer-

ing is Digital Image Correlation (DIC) [2, 15, 18]. Cracks

are regions on the image where stress concentration is high.

In DIC, images of concrete before and after loading are

compared to find the displacement field and its derivatives.

Typically, locations in the image having high displacement

derivatives are considered as crack pixels. A feasibility

study for DIC based crack detection is presented in [9]. The

following problems are characteristic of DIC based crack

detection: (1) DIC based methods, which threshold motion

gradient computed by simple block based correlation tech-

nique, produces crack localization which is usually coarse

without fine-details (2) These methods cannot find cracks

where the crack width is sub-pixel level or the heavy load-

ing is not applied. (3) Special setup conditions with speckle

patterns on test surface is required for accurate displace-

ment fields.

In this paper, we present an automatic crack detection

method which can detect both micro-cracks and macro-

cracks on bridge surfaces with high crack localization ac-

curacy. Figure 3 gives the flowchart for our motion based

crack detection system. Our algorithm takes simple video



Figure 3: Overview of the proposed algorithm

sequences of bridge surface during wheel loading due to

vehicles and gives pixel-wise detection which we refer to as

"crack map". Accurate crack maps are required by inspec-

tion engineers to predict the growth of cracks in the future

and thus take preventive measures at an early stage. Our

method is heuristic in nature which does not require prior

training procedure and utilizes physical properties of cracks

on loading for detection. Inspired from DIC based meth-

ods, we use motion information to make our method ro-

bust to noisy image structures like scratches, weldings, etc.

We frame the problem of crack detection as a binarization

problem based on temporal motion information. The ba-

sic idea is that crack pixels are those regions where there

is local motion discontinuity along the crack line. This

is achieved by a non-linear spatial-temporal filtering tech-

nique which produces likelihood of crack at every pixel.

The next stage is a Conditional Random Field (CRF) based

refinement stage, where false detections are removed using

a prior crack shape probability term which assumes that

local shape of cracks are spatially linear. This two step

method produces crack localization with higher accuracy

than single image based methods by detecting early stage

micro-cracks and removing false detections.

2. Proposed Method

2.1. Problem formulation

Given a video sequence of a sample concrete region with

image size (M,N) and F number of frames, our goal is to

find the spatial pixel-wise location of cracks on the con-

crete sample using inter-frame 2D motion temporal data.

Let X ∈ R
M×N×2F represent the dense 2D motion for

all frames in the video sequence computed with respect to

a fixed reference frame. We refer to this frame-wise mo-

tion data as Temporal Motion Volume (TMV). Our goal is

to infer pixel-wise crack label, given by Y ∈ {0, 1}M×N

from the TMV. This is a binary labeling problem which

is solved on a graph structure. We propose a non-linear

spatial-temporal filtering technique for generating crack

likelihood map followed by CRF inference which solves the

maximum-a-posteriori (MAP) problem. We find the opti-

mum crack label ŷ by maximizing the posterior probability

P (Y = y|X).
We make the Markov assumption that the crack label at

a particular pixel is influenced only by the labels of neigh-

boring pixels and independent of other pixels. Following

conventional approaches in CRF literature [1], we take neg-

ative log of the posteriori probability and convert the maxi-

mization problem to a minimization problem,

ŷ = argmax
y

P (Y = y|X)

= argmax
y

1

Z(X)
exp(−E(y|X))

= argmin
y

E(y|X).

(1)

Here E(y|X) is the energy of the configuration y ∈
{0, 1}M×N and Z(X) is the partition function. From now

on, we drop the conditioning on X , for convenience. The

configuration energy E(y) is composed of two terms. The

first term assigns crack likelihood of local patch observ-

ing the temporal motion and the second term encodes prior

knowledge about crack shape and acts as an regularization

term for outlier rejection. We represent the above binary

minimization problem as a graph structure, G = (V ,E)
with V as vertices and E as edges of graph. The likeli-

hood term is manifested as terminal weights and prior term

influences edge-weights of the graph. We solve a energy

minimization problem corresponding to the negative log of

posterior probability in equation 1 with respect to the crack

label Ŷ that can take binary values at each pixel. The en-

ergy term is given as,

E(y) =
∑

v∈V

φt(yv) +
∑

(u,v)∈E

φp(yu, yv), (2)

where the unary term φt(yv) gives the inverse likelihood of

the pixel v taking the label yv , and pairwise term φp(yu, yv)
gives the cost of assigning labels yu, yv to neighboring pixel

pairs u, v simultaneously. The unary and pairwise potential

terms are described in details in the following sections.

2.2. Non-linear spatial-temporal filtering

This section describes the spatial-temporal filtering

which is used as the unary potential to assign terminal

weights of the graph. Using insight that cracks lie on mo-

tion discontinuity, we develop a non-linear spatial temporal

filtering (NLSTF) scheme that produces high response at

regions of motion discontinuity.



Given a kernel h, of size B×B, where B is an odd num-

ber, we perform a non-linear filtering which computes the

likelihood of crack at a given vertex v in the graph. Consider

Av represents the spatially local patch of temporal motion

around the pixel represented by vertex v which has a size of

B × B × 2F , if F image frames are used. We find a dis-

similarity score between the central pixel with all the other

pixels in the local window. For similar pixels, the score is

close to zero and for dissimilar pixels the score has high

value. A weighted summation of the dissimilarity scores is

performed based on the kernel weights, which assigns the

value of unary potential φt(yv = 0) as given below,

φt(yv = 0) =
∑

i

∑

j

(

h(i, j)fd

(

T v
i,j − T v

0,0

)

)

, (3)

where T v
i,j = Av(i, j, :), is a 2F length vector containing

the motion information for all frames at a particular pixel

location (i, j) relative to the central pixel. T v
0,0 is the pixel

represented by vertex v in the graph and h(i, j) represents

the corresponding kernel weights. The function fd(.) com-

putes the dissimilarity between two temporal motion vec-

tors. For our implementation, we use the function given by,

fd(~x) =
1− e−γ‖~x‖2

2

1 + e−γ‖~x‖2

2

. (4)

The proposed function for calculating dissimilarity score

is robust to large outliers because the response flattens out

for large values. We also tested with other functions like

linear, L2 response etc. and found that re-descending M-

estimators, like equation 4, show best performance due to

their ability for rejecting large outliers. γ is the controlling

parameter for outliers rejection with larger values indicat-

ing detection of minute motion discontinuities and smaller

value producing high response only for large motion discon-

tinuities. The output from NLSTF can be directly thresh-

olded to obtain a preliminary crack labeling. However, in

our CRF setting, we use this filter response for assigning

the terminal weights of the graph.

2.3. Local shape based edge weighting

The non-linear spatial-temporal filtering assumes that

the crack probability at each pixel is independent of that

at other pixels. However, cracks show some known struc-

ture that can be utilized to act as regularization for rejecting

outliers. If neighboring pixels form a local structure typical

of cracks, it is highly probable for these to be crack pixels.

Such prior knowledge about structure, can be used to pre-

vent over-fitting from classifying all motion discontinuities

as cracks. Also small gaps between dis-jointed cracks can

be filled by using prior knowledge of shape. Due to local

conformity of crack-like structure, the "gap" pixels, which

Figure 4: Deciding edge-weighting based on local crack

structure. The yellow color depicts cells with dominant di-

rection which are used to assign high edge weights in the

neighboring pixels.

were missed by NLSTF, might have high prior crack prob-

ability, leading to positive labeling by CRF inference.

To encode prior information, we assume that cracks in a

local patch locate on a line. We use the histogram of ori-

ented gradients (HOG) [3] on every local patch of the mo-

tion discontinuity map, obtained from the NLSTF response,

to locate the dominant direction which is used to assigning

edge weights as shown in figure 4. Edge weight assign-

ment of this fashion preserves locally linear structure and

removes false detections.

Let Lv represent the local motion discontinuity patch ob-

tained from non-linear filter response. From this patch we

compute the HOG feature on the motion discontinuity and

obtain the gradient strength in each of the 8 bins oriented

towards the 8-neighbors of the current graph vertex v which

is represented as a vector Hv for the current graph vertex.

Let u ∈ N(v) be neighboring vertex, and Hv(u) represent

the element of gradient strength at vertex v in the direction

of vertex u. Then the weights assigned to the edge (u, v) is

given as,

φp(yu 6= yv) =
Hu(v) +Hv(u)

2
. (5)

The above equation suggests that graph edges lying in

the dominant gradient direction are assigned higher weights

and the other edges are given lower weights. A compar-

atively high cost has to be paid, if neighboring pixels in

the dominant direction are assigned different labels. Such

a weighting scheme favors removing edges that have lower

edge weights and hence preserves those structures in the

motion discontinuity map that have locally linear structure.

After computing the terminal and edge weights, infer-

ence on the graph is performed by standard graph-cut algo-

rithm [1] to produce the final crack labeling.



(a) Wheel loading setup on concrete bridge sample

(b) Illustration of wheel loading on concrete block and video

capture by camera

Figure 5: Experimental setup to simulate traffic loading.

3. Experimental Results

3.1. Experimental setup

We performed controlled experiments on real concrete

block to verify our algorithm’s effectiveness. A concrete

block having width 2.1 meters , length 4 meters and thick-

ness 190mm, was used for experiment purpose. The block

was loaded with a moving wheel load (89KN) that traversed

its length back and forth to simulate the effect of traffic.

We refer to each such to-and-fro traversal of the moving

wheel as a cycle. Camera was setup at a distance of 612mm

from the lower surface of the concrete block perpendicu-

lar to the plane of bridge, which recorded the movement

of slab as wheel was moving on the upper surface. Exper-

imental setup is shown in figure 5. With each cycle, the

deterioration of concrete slab will increase and the devel-

oped cracks and faults will become more prominent. For

our experiments we captured the image sequences of the

lower surface of the concrete block at roughly 1000, 2000,

3000, 4000, 5000 and 20000 cycles.

3.2. Implementation details

We now discuss the details on image processing methods

and parameters used for realizing the discussed algorithm

in section 2. For dense 2D motion extraction we used MIT

CSAIL Optical flow [12] with default parameters. For each

experiment, a base frame (first frame of the video) was fixed

and motion in all frames was computed with respect to this

base frame. The video sequence had F = 200 frames which

were used to create the temporal motion volume (TMV)

having 400 optical flow fields for x, y motion fields. The

image dimensions were (M,N) = (640, 480). For com-

puting the response from NLSTF, the filter kernel (h) in

equation 3, used for dissimilarity computation was a sim-

ple 8-neighbor Laplacian 3 × 3 kernel. Larger block-size

may be used for more diffuse motion discontinuity across

the crack. Parameter γ was set at 0.01 for the experiments.

We used local patch size of B = 32 for edge weighting

scheme. An implementation graph-cut by Boykov et al.

[1] was used to perform inference. Some isolated false de-

tections which might be detected by CRF inference were

removed by connected components analysis. We follow a

similar technique described in [10], by finding connected

components and removing ones with number of pixels less

than 244. We observed that this step gives us a small im-

provement in detection accuracy.

3.3. Evaluation metric

We test our proposed algorithm against crack labels pro-

vided by an expert crack inspector. The inspector was pre-

sented with the videos of concrete slab which were captured

during the wheel loading experiments and also with sin-

gle images having maximum crack opening for each cycle.

We found out from the inspector that crack labeling using

video sequences was much easier than using a single image,

which is in line with our claim of improved crack detection

from motion fields.

To evaluate crack localization accuracy, we divide the

image into non-overlapping patches of size 32 × 32 and as-

sign crack label to each such image cell in the expert labeled

ground truth map and the detected crack map. Patches hav-

ing number of crack pixels more than a certain threshold

were declared as crack patch. We use standard true posi-

tive rate (recall), false positive rate and F1 score metric for

quantitative evaluation of our method against other methods

in literature. The overall detection quality is determined by

F1 score.

3.4. Crack detection accuracy

Videos for 1000 (early stage), 5000 (intermediate stage)

and 20000 (damaged) cycles were used for comparing crack

detection performance. Labeling obtained by simple thresh-

olding of non-linear filter response (NLSTF), CRF-refined

label (CRF) and cleaned detection with non-connected

components removal (CRF+CC), as discussed in section

3.2, were compared. These are shown in the last three rows

of table 1. For simple thresholding, pixels with NLSTF re-

sponse greater than 0.5 were considered as cracks. Qual-

itative comparison for these outputs are shown in figure 6

which also shows clear motion discontinuity at the location

of cracks.



Table 1: Quantitative comparison of various methods. Results have been rounded up to 2 decimal places.

1000 Cycles 5000 Cycles 20000 Cycles

Method TPR FPR F1 TPR FPR F1 TPR FPR F1

Schmugge [19] 0.37 0.15 0.32 0.48 0.12 0.46 0.84 0.31 0.49

Jahanshahi [10] 0.78 0.12 0.61 0.80 0.08 0.73 0.92 0.09 0.76

Proposed (NLSTF) 0.83 0.16 0.62 0.91 0.09 0.80 0.93 0.06 0.85

Proposed (CRF) 0.85 0.05 0.80 0.95 0.05 0.87 0.93 0.04 0.89

Proposed (CRF+CC) 0.85 0.04 0.83 0.95 0.03 0.92 0.93 0.03 0.90

Results indicate that NLSTF output, although has high

recall, produces false positive detections which reduces

overall F1 score. The CRF refinement process removes

such outliers and reduces false positive detections. Recall

is also improved by CRF refinement which joins formerly

disjointed crack regions to form continuous linear elements.

Further post-processing, which removes isolated detections,

reduces false positive rate improving overall F1 score by a

small amount.

3.5. Comparison with other methods

In the literature, while there are many image based crack

detection algorithms, there has not been considerable work

on motion based crack detection except DIC based meth-

ods [2, 15]. Thus we evaluated our method against the im-

age based crack detection methods presented in [19] and

[10] because they provide state-of-the-art results in image

based crack detection. We also wanted to compare with

crackIT [14], however we could not obtain license for using

the toolbox. For fair comparison with our method, which

uses multiple frames, image based crack detection was ap-

plied to 5 manually picked images where cracks were visi-

ble and the union of detections was computed to be used for

comparison. We also tried taking union of detection for all

200 frames of each sequence, but that produced increased

false positive detections at almost similar recall thus reduc-

ing overall F1 score. Images were preprocessed with adap-

tive histogram equalization to improve detections for both

methods. The quantitative comparison results are provided

in table 1. Figure 7 gives the visualization of crack detection

all methods. Sequences for 1000 (early), 5000 (intermedi-

ate) and 20000 (damaged) cycles were chosen to show the

performance of each method.

We also compared with DIC based methods. However

for the case of bridge surface, proper texture was miss-

ing, unlike artificially sprayed metal structures where DIC

is predominantly used. This led to erroneous 2D motion

extraction and thus local gradient thresholding methods for

crack detection did not produce satisfactory results. Hence

we do not report the comparison with DIC.

3.5.1 Comparison with Schmugge [19]

We obtained the CNN model described in the paper [19],

trained on nuclear plant crack dataset, from the authors. We

did not train the network on bridge images. Overlapping

image patches of size 224× 224 were chosen with stride of

16 pixels. Softmax response greater than 0.5 was declared

as crack and a neighborhood of 16 × 16 around the current

pixel was labeled as crack.

Quantitative results from table 1 shows this method has

low recall and high false positive rate compared to our

method and Jahanshahi [10] because the CNN was trained

on nuclear power plant dataset and it did not generalize

well to detect cracks on the bridge surface. Furthermore,

the coarse nature of detection resulted in higher false pos-

itive detections thereby reducing F1 score. Our method

achieves F1 scores improvement of 0.41-0.51 over this

method. Qualitative comparison can also be seen in figure

7 which shows coarse detection compared to our method

which produces much finer quality detection. These results

indicate that good generalization performance for crack de-

tection "in-the-wild" dictate that machine learning methods

be trained with large amount of diverse data which is diffi-

cult, time-consuming and expensive to obtain.

3.5.2 Comparison with Jahanshahi [10]

We followed the algorithmic details mentioned in the paper

[10] to implement the method assuming that depth varia-

tion of the crack surface was negligible. Initial detection

by morphological transformations were refined by remov-

ing connected components, as mentioned in the paper, hav-

ing less than 244 pixels. Further refinement was obtained

by discriminative model which learned geometric feature

of cracks. A polynomial SVM kernel of degree 3 was used.

Training was done on synthetic crack dataset using the tech-

nique described in the paper.

For all cycles, our method outperforms Jahanshahi [10]

in F1 score due to false positive detections and failure to de-

tect micro-cracks at early stage. With increasing number of

cycles, the F1 score and true positive rate for this method in-

creases which indicates that it is well suited for macro-crack

detection clearly visible in the image. Our method achieves

F1 scores improvement of 0.14-0.22 over this method.



(a) Motion Visualization (b) NLSTF (c) CRF (d) CRF+Post processing(CC)

Figure 6: From left to right - (a) Optical flow visualization for a particular frame showing motion discontinuity at crack

locations, (b) NLSTF response having false positive detections, (c) CRF output successfully removing outliers, (d) Post-

processing which removes isolated detections for 1000 cycles.

Figure 7 shows that while our method successfully de-

tects micro-crack in the top right corner of the image for

1000 cycles while this method fails to do so. More-

over, this algorithm confused texture patterns in the bottom

left as crack pixel thus producing false positive detections

which our method successfully rejects yielding better per-

formance.

3.6. Early stage crack detection

Our method can accurately detect cracks at an early stage

which is evident from the high recall and F1 score even at

1000 cycles case. Qualitative analysis from figure 7 indicate

that the obtained crack map is very similar to the ground

truth map even at an early stage. Furthermore, for both

5000 and 20000 cycles, F1 score is high with good quali-

tative detection, which provides evidence that our method

can detect cracks at an early stage before serious damage

occurs. In addition, as demonstrated in previous sections,

our motion based system provides accurate and finer crack

map detection which can be used by inspectors and engi-

neers to predict crack growth patterns in the future.

4. Conclusion

We have presented an automatic crack detection meth-

ods for detecting both visible cracks and micro-cracks at

an early stage using motion analysis on concrete bridge

structures. We show that motion features on the crack sur-

face can be used to successfully detect cracks that are not

clearly visible and hence cannot be detected by conven-

tional image based crack detection techniques. Experimen-

tal results demonstrate the effectiveness of our CRF based

crack detection algorithm. The proposed method can detect

cracks at an early stage using just videos from generic cam-

eras which facilitates economical and frequent maintenance

scheduling. It also gives detailed crack map which can be

used to predict crack growth in the future. For these rea-

sons, our proposed automatic crack detection system pro-

vides a faster, more practical and economical alternative to

manual crack inspection. In the future, we hope to design

systems that provide high crack localization accuracy using

cameras at large distance as well.

Acknowledgment

We are grateful to Research Association for Infrastruc-

ture Monitoring System (RAIMS)1 for sharing the concrete

crack dataset. This work was partly supported by Strate-

gic Innovation Promotion Program (SIP), a Japanese project

led by the Cabinet Office’s Council for Science, Technology

and Innovation.

References

[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Trans. Pattern Anal.

Mach. Intell., 23(11):1222–1239, Nov. 2001.

[2] H. Bruck, S. McNeill, M. A. Sutton, and W. Peters Iii. Digital

image correlation using newton-raphson method of partial

differential correction. Experimental mechanics, 29(3):261–

267, 1989.

[3] N. Dalal and B. Triggs. Histograms of oriented gradi-

ents for human detection. In 2005 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 886–893 vol. 1, June 2005.

[4] Y. Fujita, Y. Mitani, and Y. Hamamoto. A method for crack

detection on a concrete structure. In 18th International Con-

ference on Pattern Recognition (ICPR’06), volume 3, pages

901–904, 2006.

[5] D. A. Hordijk and H. W. Reinhardt. Growth of discrete

cracks in concrete under fatigue loading. In Toughen-

ing mechanisms in quasi-brittle materials, pages 541–554.

Springer, 1991.

[6] T. T. Hsu. Fatigue of plain concrete. In Journal Proceedings,

volume 78, pages 292–305, 1981.

1http://www.raims.or.jp/en/



Schmugge [19] Jahanshahi [10] Proposed Ground Truth (1000 cycles)

Schmugge [19] Jahanshahi [10] Proposed Ground Truth (5000 cycles)

Schmugge [19] Jahanshahi [10] Proposed Ground Truth (20000 cycles)

Figure 7: Crack localization by various methods for 1000 cycles (1st row), 5000 cycles (2nd row) and 20000 cycles (3rd row)

[7] H. Hu, Q. Gu, and J. Zhou. Htf: a novel feature for general

crack detection. In 2010 IEEE International Conference on

Image Processing, pages 1633–1636, Sept 2010.

[8] Y. Huang and B. Xu. Automatic inspection of pave-

ment cracking distress. Journal of Electronic Imaging,

15(1):013017–013017–6, 2006.

[9] T. Hutt and P. Cawley. Feasibility of digital image correla-

tion for detection of cracks at fastener holes. Ndt & E Inter-

national, 42(2):141–149, 2009.

[10] M. R. Jahanshahi, S. F. Masri, C. W. Padgett, and G. S.

Sukhatme. An innovative methodology for detection and

quantification of cracks through incorporation of depth per-

ception. Machine vision and applications, 24(2):227–241,

2013.

[11] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and

P. Fieguth. A review on computer vision based defect de-

tection and condition assessment of concrete and asphalt

civil infrastructure. Advanced Engineering Informatics,

29(2):196–210, 2015.

[12] C. Liu, W. T. Freeman, and E. H. Adelson. Beyond pixels:

exploring new representations and applications for motion

analysis. PhD thesis, Massachusetts Institute of Technology,

2009.

[13] J. Mordock. A critical review of research on the fatigue of

plain concrete. Illinois Univ Eng Exp Sta Bulletin, 1965.

[14] H. Oliveira and P. L. Correia. Crackit—an image processing

toolbox for crack detection and characterization. In 2014

IEEE International Conference on Image Processing (ICIP),

pages 798–802. IEEE, 2014.

[15] J. Poissant and F. Barthelat. A novel “subset splitting” proce-

dure for digital image correlation on discontinuous displace-

ment fields. Experimental mechanics, 50(3):353–364, 2010.



[16] J. Roesler and E. Barenberg. Fatigue and static testing of

concrete slabs. Transportation Research Record: Journal of

the Transportation Research Board, (1684):71–80, 1999.

[17] F. Roli. Measure of texture anisotropy for crack detection

on textured surfaces. Electronics Letters, 32(14):1274–1275,

Jul 1996.

[18] J. Rupil, S. Roux, F. Hild, and L. Vincent. Fatigue micro-

crack detection with digital image correlation. The Journal

of Strain Analysis for Engineering Design, 46(6):492–509,

2011.

[19] S. J. Schmugge, L. Rice, N. R. Nguyen, J. Lindberg,

R. Grizzi, C. Joffe, and M. C. Shin. Detection of cracks in

nuclear power plant using spatial-temporal grouping of local

patches. In 2016 IEEE Winter Conference on Applications

of Computer Vision (WACV), pages 1–7. IEEE, 2016.

[20] P. Subirats, J. Dumoulin, V. Legeay, and D. Barba. Automa-

tion of pavement surface crack detection using the continu-

ous wavelet transform. In 2006 International Conference on

Image Processing, pages 3037–3040, Oct 2006.

[21] T. Tomikawa. A study of road crack detection by the meta-

genetic algorithm. In Africon, 1999 IEEE, volume 1, pages

543–548 vol.1, 1999.

[22] T. Yamaguchi and S. Hashimoto. Improved percolation-

based method for crack detection in concrete surface images.

In Pattern Recognition, 2008. ICPR 2008. 19th International

Conference on, pages 1–4, Dec 2008.

[23] T. Yamaguchi, S. Nakamura, R. Saegusa, and S. Hashimoto.

Image-based crack detection for real concrete surfaces.

IEEJ Transactions on Electrical and Electronic Engineering,

3(1):128–135, 2008.


