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Abstract. This paper proposes a robust least squares solution to the
calibrated two-view geometry with two known orientation angles. Using
the knowledge reduces the degrees of freedom (DoF) from five to three:
one from a remaining angle and two from a translation vector. This paper
determines that the three parameters are obtained by solving a minimiza-
tion problem of the smallest eigenvalue containing the unknown angle.
The proposed solution minimizes a new simple cost function based on
the matrix determinant in order to avoid the complicated eigenvalue
computation. The estimated parameters are optimal since the cost func-
tion is minimized under three DoFs. Experimental results of synthetic
data show that the robustness of the proposed solution is up to 1.5◦

angle noise, which is approximately three times that of a conventional
solution. Moreover, 60 point correspondences, fewer than half those in
conventional solutions, are sufficient to reach the performance boundary.

Keywords: Two-view Geometry, Relative Pose Problem, Essential Ma-
trix, Structure from Motion, Two Known Orientation Angles

1 Introduction

The calibrated two-view geometry is an estimation problem of the relative pose
between two cameras capturing the same scene from different positions. It is the
most basic theory for an image based 3D reconstruction. ”Calibrated” means
that the intrinsic camera parameters, e.g., the focal length, are assumed to be
known.

The relative pose is generally expressed by five parameters, i.e., three orien-
tation angles and a 3D translation vector up to scale. The absolute scale factor
cannot be estimated without any prior knowledge about the scene. One point cor-
respondence in the two images gives one constraint between the correspondence
and the relative pose. Therefore, the calibrated two-view geometry is solved by at
least five point correspondences. Many solutions based on point correspondences
have been proposed, which are called the 5-point [1–7], 6-point [8], 7-point [9]
and 8-point [9] algorithms.
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Meanwhile, a restricted relative pose problem has been raised in which two
orientation angles are known. Two orientation angles are obtained by an internal
measurement unit (IMU) sensor or a vanishing point. Using the known angles
brings two great benefits. The one is that an angle measured by high accurate
sensors is more reliable than that obtained by the point correspondence based
algorithms. The other is that the relative pose problem becomes simpler since
the total degrees of freedom (DoF) is reduced from five to three. Therefore,
the relative pose problem is solved by at least three point correspondences.
This reduces the computational cost of the pose estimation and also reduces the
number of iterations of RANSAC [10].

Actual IMU sensors in many consumer products do not have the high accu-
racy needed in those solutions due to noise caused by camera shake and tem-
perature change. Therefore, pragmatic solutions to the restricted pose problem
must provide robustness to not only image noise but also sensor noise.

Although some solutions are proposed for using two known orientation angles,
they are neither robust nor able to estimate the optimal pose. Kalantari et
al. proposed a solution to the 3-point minimal case [11]. They formulate the
problem as a system of multivariate polynomial equations and solve it by using
a Gröbner basis method. Since the Gröbner basis method for that formulation
requires large matrix decompositions, Kalantari et al.’s solution is difficult to
extend to the least squares case in which the degree of polynomial equations
becomes higher and the size of matrices becomes much larger. Fraundorfer et al.
proposed three kind of solutions [12]. One is for the minimal case, and the others
are for the least squares case of four and more than five point correspondences,
respectively. Fraundorfer et al. show that the minimal solution is efficient for a
RANSAC scheme. However, the two least squares solutions are neither optimal
nor robust to noise because they do not exactly satisfy the nonlinear constraints
that express three DoFs.

This paper proposes a robust least squares solution to the calibrated two-
view geometry with two known orientation angles. The problem is formulated as
a minimization problem of the smallest eigenvalue of a 3× 3 matrix containing
the unknown angle. The proposed solution minimizes a new simple cost function
based on the matrix determinant in order to avoid the complicated eigenvalue
computation. The unknown angle and translation vector are obtained as the root
of an eighth degree univariate polynomial and the eigenvector corresponding to
the smallest eigenvalue, respectively. Since the cost function is minimized under
three DoFs, the proposed solution is optimal and robust to noisy data.

2 Problem Statement

This section describes the calibrated two-view geometry with two known orien-
tation angles. Figure 1 shows an example such that the two orientation angles
are obtained by the gravity direction g.



Title Suppressed Due to Excessive Length 3

x

x'

g

g
3D point

t,  R=Rz Rx Ry

obtained by gunknowns

image 1

image 2

Fig. 1. Calibrated two-view geometry with two known orientation angles.

Let x and x′ be point correspondences represented by 3D homogeneous coor-
dinates in images 1 and 2, respectively. Then, the calibrated two-view geometry
is written in the form

x′T [t]×RzRyRxx = 0. (1)

where t = [tx, ty, tz]
T denotes a 3D translation vector up to scale, [ ]× denotes

a 3 × 3 skew symmetric matrix representation of the vector cross product, and
Rx, Ry, and Rz are 3×3 rotation matrices around x, y, and z-axis, respectively.
Equation (1) has five DoFs (two from t and three from Rx, Ry and Rz.)

Let φ, ψ, and θ be the orientation angles around x, y, and z-axis, respectively.
Rx, Ry, and Rz are expressed as

Rx =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ



 , (2)

Ry =





cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ



 , (3)

Rz =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 . (4)

If an IMU sensor is embedded in the cameras or if a vanishing point is
detected in the images, the two orientation angles around x- and y-axis, i.e., φ
and ψ, are known. Since Rx and Ry are given by (2) and (3), RyRxx can be
simply expressed by x. Then, we have
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x′T [t]×Rzx = 0. (5)

Equation (5) represents the relative pose problem with two known orientation
angles. The total DoF of (5) is reduced to 5− 2 = 3.

Replacing [t]×Rz by a 3× 3 matrix E, (5) can be written in the linear form

x′TEx = 0. (6)

Here, E1,1 = E2,2, E1,2 = −E2,1 and E3,3 = 0. Ei,j is the element of E at
the i–th row and the j–th column.

E is called the essential matrix if and only if two of its singular values are
nonzero and equal, and the third one is zero [13]. These constraints are expressed
by

det(E) = 0, (7)

EETE −
1

2
trace(EET )E = 03×3. (8)

E has six parameters. However, E has only three DoFs due to the scale
ambiguity and the above constraints [12].

Solving a nonlinear equation (5) and solving a linear equation (6) with the
nonlinear constraints ((7) and (8)) are identical.

3 Previous Work

This section briefly describes the conventional solutions and points out their
drawbacks. Their algorithm outlines are shown in Figs. 2(a) and 2(b).

3.1 Kalantari et al.’s Solution [11]

Kalantari et al. proposed an algorithm to obtain all unknowns in (5) by solving
a system of multivariate polynomial equations.

First, the Weierstrass substitution is used to express cos θ and sin θ without

the trigonometric functions: cos θ = 1−p2

1+p2 and sin θ = 2p
1+p2 , where p = tan θ

2
.

By substituting three point correspondences into (5) and by adding a new
scale constraint ‖t‖ = 1, there are four polynomial equations in four unknowns
{tx, ty, tz, p} of degree three. Kalantari et al. adopt a Gröbner basis method to
solve the system of polynomial equations. The solutions are obtained by Gauss-
Jordan elimination of 65× 77 Macaulay matrix and eigenvalue decomposition of
12 × 12 Action matrix. Finally, at most 12 solutions are given from the eigen-
vectors.

Kalantari et al.’s 3-point algorithm is difficult to extend to the least squares
case in which the degree of polynomial equations becomes higher and the size of
matrices becomes a few hundred dimensions.
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Fig. 2. Outlines of the conventional and proposed solutions.

In the experiments in this paper, the size of the decomposed matrices and
the number of the solutions are not same as those in Kalantari et al.’s original
implementation. The details are described in Sect.5.2.

3.2 Fraundorfer et al.’s Solution [12]

Fraundorfer et al. estimated the essential matrix in (6) instead of {tx, ty, tz, p}.
The most important contribution is to propose solutions to the least squares
case.

Fraundorfer et al. proposed three algorithms for the cases of three, four and
more than five point correspondences. The basic idea is very similar to the point
correspondence based algorithms, i.e., Nistér’s 5-point [3], Hartley’s 7-point [9]
and Hartley’s 8-point [9] algorithm.

From a set of n point correspondences, (6) can be equivalently written as

Mvec(E) = 0n×1, (9)

where M =
[

x1 ⊗ x′

1 · · · xn ⊗ x′

n

]T
, vec( ) denotes the vectorization of a

matrix and ⊗ denotes the Kronecker product.
The solution of (9) is obtained by

E =
6−n
∑

i=1

aiVi, (10)

where Vi is the matrix corresponding to the generators of the right nullspace
of the coefficient matrix M , and ai is an unknown coefficient.
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Estimating E is equivalent to calculate ai. One of ai can be set to one to
reduce the number of unknowns due to the scale ambiguity of E. In the 3-point
case, (7) and (8) are used to solve two unknowns. Similarly, (7) is used to solve
one unknown in the 4-point case. For more than five point correspondences,
the solution is obtained by taking the eigenvector corresponding to the smallest
eigenvalue of MTM .

An essential matrix can be decomposed to two Rzs and ±t [9, 14]. Fraundor-
fer et al.’s 3-point, 4-point, and 5-point algorithms estimate at most four, three
and one essential matrices, respectively. Therefore, they give at most 16, 12, and
four solutions.

Fraundorfer et al.’s 3-point algorithm satisfies all the constraints. However,
the 4-point algorithm considers only one constraint, and the 5-point algorithm
ignores all constraints. For this reason, an estimated E of the 4-point and 5-point
algorithms may not be an essential matrix. To correct the estimated E to an
essential matrix, constraints are enforced by replacing the singular values of E
so that two are nonzero and equal, and the third one is zero. The enforcement
does not guarantee to optimize θ and t that minimize (6), but optimizes the
minimum change of the Frobenius norm. The 4-point and the 5-point algorithm
do not minimize the residual (6) under three DoFs. Therefore, they are not
optimal solutions.

4 Proposed Solution

This section first describes the basic idea of the proposed solution in the minimal
case, and then, explains how to extend the idea to the least squares case. The
algorithm outline is shown in Fig. 2(c).

4.1 3-point Algorithm for the Minimal Case

Equation (5) can be equivalently written as

vT t = 0, (11)

where v = [x′]T
×
Rzx.

Given three point correspondences, we have

At = 03×1, (12)

where A = [v1,v2,v3]
T is a 3× 3 matrix containing the unknown θ.

Since tmust not be the trivial solution t = 03×1, (12) shows thatA is singular
and t is the nullspace of A. Consequently, θ is the solution of det(A) = 0.

In the proposed 3-point algorithm, cos θ and sin θ are replaced by new un-
knowns c and s, respectively, instead of using the Weierstrass substitution. The
reason is that the Weierstrass substitution changes the range of values from
−π ≤ θ ≤ +π to −∞ < p < +∞. This may cause computational instability.
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Furthermore, a symbolic fractional calculation complicates polynomial equations
in the least squares case.

The unknowns c and s are obtained by solving the following system of poly-
nomial equations:

{

f1(c, s) = det(A) = 0,

g(c, s) = c2 + s2 − 1 = 0.
(13)

Equation (13) can be solved by the resultant based method, which is also
known as the hidden variable method [15]. Let f1 and g be polynomial equations
of s and c be regarded as a constant, and the resultant Res(f1, g, c) = 0 is a fourth
degree univariate polynomial in c. We obtain at most four solutions as the real
roots of Res(f1, g, c) = 0.

As a result, θ is obtained by

θ = atan2(s, c). (14)

Subsisting estimated θ into (12), t is obtained by the cross product of two
arbitrary rows of A. The largest of these three cross products should be chosen
for numerical stability [14].

If vi × vj is the largest, we obtain t up to scale,

t = ±
vi × vj

‖vi × vj‖
. (15)

The proposed 3-point algorithm gives at most eight possible combinations of
four θs and ±t.

4.2 4-point Algorithm for the Least Squares Case

This section describes how to extend the proposed 3-point algorithm to the least
squares case.

Given more than four point correspondences, the pose estimation problem is
expressed by an optimization problem:

minimize
t,θ

‖Bt‖2 (16)

subject to ‖t‖ = 1

where B = [v1, · · · ,vn]
T is an n× 3 matrix containing the unknown θ, and

‖t‖ = 1 is a constraint to avoid the trivial solution t = 03×1.
As known in Hartley’s 8-point algorithm [9], the optimal t is the eigenvector

corresponding to the smallest eigenvalue of BTB, and the minimum error in the
cost function ‖Bt‖2 is equal to the smallest eigenvalue of BTB. The optimiza-
tion problem (16) is essentially identical to the eigenvalue problem. However, the
smallest eigenvalue of BTB represented by θ and imaginary numbers is difficult
to compute directly.
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To avoid the eigenvalue computation, this paper proposes a new cost function,
det(BTB). The determinant of a square matrix is equal to the product of all
it’s eigenvalues, and BTB is positive-semidefinite. Therefore, ‖Bt‖2 is expected
to be minimized if det(BTB) is minimized. The proposed 4-point algorithm
minimizes det(BTB) instead of ‖Bt‖2.

Similar to the proposed 3-point algorithm, θ is obtained by solving the fol-
lowing polynomial system of equations:







f2(c, s) =
d

dθ
det(BTB)

∣

∣

∣cos θ=c,
sin θ=s

= 0,

g(c, s) = c2 + s2 − 1 = 0.
(17)

Here,
d

dθ
det(BTB)

∣

∣

∣cos θ=c,
sin θ=s

denotes that cos θ and sin θ in
d

dθ
det(BTB) are

replaced by c and s, respectively.
The resultant Res(f2, g, c) = 0 is an eighth degree univariate polynomial in

c. We select the optimal θ from the real roots so that it minimizes det(BTB) or
the smallest eigenvalue of BTB.

Finally, we obtain the optimal t by taking the eigenvector corresponding to
the smallest eigenvalue of BTB. The proposed 4-point algorithm gives at most
two possible combinations of one θ and ±t.

Moreover, the proposed 4-point algorithm includes the solutions of the pro-
posed 3-point algorithm. For this reason, the proposed 4-point algorithm is a
true extension of the 3-point algorithm. The proof is described in Appendix.

5 Experiments

This section evaluates the performance of the proposed solutions on synthetic
data. The proposed solutions were compared with Kalantari et al.’s and Fraun-
dorfer et al.’s solutions as well as Nistér’s 5-point and Hartley’s 8-point algo-
rithms, which are standard methods for using only point correspondences. All
program codes were written in MATLAB 2012b and implemented by the au-
thors of this paper except for Nistér’s 5-point algorithm1. Kukelova’s automatic
generator of Gröbner basis solvers [16]2 was used to implement the conventional
3-point algorithms. Kalantari et al.’s 3-point algorithm in the experiments com-
puted 58 × 66 Macaulay matrix and 8 × 8 Action matrix due to the difference
in the definition of the unknown orientation angle3. The simulations were per-
formed on a windows 7 SP1 with a Core i7-3770 processor.

5.1 Synthetic Data

The robustness of the proposed solutions was evaluated under various image and
angle noises on synthetic data.
1 http://www.vis.uky.edu/~stewe/FIVEPOINT/
2 http://cmp.felk.cvut.cz/minimal/automatic_generator.php
3 The original derivation of Kalantari et al. [16] assumes that the unknown orientation
angle is around y-axis, not z-axis as in this paper.
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3D points were generated randomly similar to Fraundorfer et al. [12] so that
the 3D points have a depth of 50% of the distance of the first camera to the
scene. In the work of Fraundorfer et al. [12], two camera configurations are
performed, i.e., sideway and forward motion with random rotation. To simulate a
more realistic environment, random motion with random rotation was performed
in these experiments. The baseline between the two cameras was 10% of the
distance to the scene.

Gaussian noise was added to two known orientation angles and the image
points, which are projections of the 3D points onto the cameras. For an image
noise test, the standard deviation of Gaussian noise was changed 0 ≤ σimage ≤ 3
pixel for the image points and fixed σangle = 0.5◦ for the angles. Similarly,
for an angle noise test, the standard deviation of Gaussian noise was changed
0◦ ≤ σangle ≤ 3◦ for the angles and fixed σimage = 0.5 pixel for the point
correspondences.

Kalantari et al. and Fraundorfer et al. assume that the error in the two ori-
entation angles measured by a low cost sensor is from 0.5◦ to at most 1.0◦.
However, information of the accuracy of almost all low cost sensors is not pub-
lished. Some may have noise larger than 1.0◦. Therefore, the error was assumed
to be at most 3.0◦ in the experiments.

The estimation errors in θ and t were evaluated as follows:

Error(θest, θtrue) = abs(θest − θtrue), (18)

Error(test, ttrue) = cos−1

(

tTestttrue

‖test‖ ‖ttrue‖

)

, (19)

where the subscript est and true denote the estimated and the ground truth
value, respectively. If an algorithm found multiple solutions, the one that had the
minimum error was selected. The root mean square (RMS) errors in degrees are
plotted over in 500 independent trials for each noise level in the result figures.

5.2 Estimation Error for the Minimal Case

The robustness of the proposed 3-point algorithm was evaluated in the minimal
case and compared with the two conventional 3-point algorithms and Nistér’s
5-point algorithm.

Figs. 3 and 4 indicate that all the 3-point algorithms have almost the same
performance. There is no difference between the DoFs of each algorithm. Thus,
they solve the mathematically identical problems and estimate almost the same
values. Nistér’s algorithm is not influenced by the angle noise in Fig. 4 because
it uses only point correspondences.

Nistér’s algorithm is slightly better for estimating the rotation than the other
methods. The difference is only approximately 1.0◦. On the other hand, the
3-point algorithms estimate translation vectors much better than Nistér’s al-
gorithm. Hence, the 3-point algorithms are better to use if the two angles are
known.
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Fig. 3. Results of the minimal case with variable image noise (0 ≤ σimage ≤ 3 pixel)
and fixed angle noise (σangle = 0.5◦.)
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Fig. 4. Results of the minimal case with fixed image noise (σimage = 0.5 pixel) and
variable angle noise (0◦ ≤ σangle ≤ 3◦.)

5.3 Estimation Error for the Least Squares Case

The robustness of the proposed 4-point algorithm was evaluated in the least
squares case and compared with Fraundorfer et al.’s 5-point algorithm and Hart-
ley’s 8-point algorithm. The number of point correspondences was 100 in this
experiment.

Figure 5 shows that the proposed algorithm is more stable than the others if
the image noise is raised. From 0.4 to 1.0 pixel noises, the estimation errors in
the algorithms of Fraundorfer et al. and Hartley increase considerably. There is
no significant difference between them in a high level image noise. However, the
proposed algorithm is robust in such cases.

Figure 6 shows that the proposed algorithm is more robust than that of
Fraundorfer et al. in a practical scene. Their algorithm is much more sensitive
to the angle noise and less accurate than Hartley’s algorithm, which is not in-
fluenced by the angle noise, similarly to Nistér’s algorithm. Fraundorfer et al.’s
algorithm is effective for only less than 0.4◦ angle noise. On the other hand,
the proposed algorithm is robust against to the angle noise up to 1.5◦. This is
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Fig. 5. Results of the least squares case with variable image noise (0 ≤ σimage ≤ 3
pixel) and fixed angle noise (σangle = 0.5◦.)
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Fig. 6. Results of the least squares case with fixed image noise (σimage = 0.5 pixel)
and variable angle noise (0◦ ≤ σangle ≤ 3◦.)

3 times as much as Fraundorfer et al.’s algorithm. Additionally, the estimation
errors in the proposed algorithm rise gradually.

5.4 Estimation Error for the Number of Point Correspondences

The influence of changing the number of point correspondences was evaluated in
the least squares case. The image and angle noise were fixed σimage = 0.5 pixel
and σangle = 0.5◦, respectively. From four to 200 point correspondences were
evaluated.

As shown in Fig. 7, the proposed algorithm outperforms the others regardless
of the number of the point correspondences. It is notable that the proposed algo-
rithm reaches the performance boundary at 60 point correspondences, whereas
the conventional algorithms needs more than 100 point correspondences. This
is very important for practical use since a few dozen point correspondences are
generally obtained. Moreover, for more than 40 point correspondences, Fraun-
dorfer et al.’s algorithm is worse than Hartley’s algorithm, which uses only point
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correspondences. This result indicates that two known angles are not useful for
Fraundorfer et al.’s algorithm in the case of many point correspondences.

5.5 Computation Time

The comparison of the computation time is summarized in Table 1. Note that
the all computation times were measured in MATLAB 2012b.

The proposed 4-point algorithm is slightly slower than Fraundorfer et al.’s 5-
point algorithm since the proposed algorithm solves an eighth degree polynomial
by using roots command. The increase in the number of point correspondences
seems to have no influence. According to the analysis of MATLAB profiler, most
of the computation time was spent running svd command in Fraundorfer et al.’s
5-point algorithm and roots command and calculating the coefficients of the
polynomial in the proposed 4-point algorithm. The increase in the number of
point correspondences is not significant since matrix multiplication is well opti-
mized in MATLAB. The conventional 3-point algorithms take much longer com-
putation time to perform Gauss-Jordan elimination, rref command in MAT-
LAB. However, Kalantari et al. [11] report that the total time of their C++
implementation is 0.002 milliseconds on a laptop PC with a 1.6 GHz processor.
Although they do not refer to the trade name of the CPU and the code opti-
mization, they suggest that writing C++ improves the efficiency of the proposed
algorithms dramatically. Generating point correspondences (point detection and
matching), is one of the most time-consuming processes in practical 3D recon-
struction. It takes more than 10 milliseconds to detect points from a VGA image
even if GPU implementation [17, 18]. For this reason, the computation time of
the proposed solutions would be negligible.

6 Conclusion

This paper has proposed a robust least squares solution to the calibrated two-
view geometry with two known orientation angles. Using the knowledge reduces
the DoFs from five to three: one from a remaining angle and two from a transla-
tion vector. This paper had determined that the three parameters are obtained
by solving a minimization problem of the smallest eigenvalue containing the
unknown angle. The proposed solution minimizes a new simple cost function
based on the matrix determinant in order to avoid the complicated eigenvalue
computation. The estimated parameters are optimal since the cost function is
minimized under three DoFs. Experimental results for synthetic data showed
that the robustness of the proposed solution is up to 1.5◦ angle noise, which is
approximately three times that of a conventional solution. Moreover, 60 point
correspondences, fewer than half those in conventional solutions, are sufficient
to reach the performance boundary. The proposed solution is applicable for con-
sumer IMU sensors to achieve highly accurate 3D reconstruction. Demonstrating
in a practical scene is a future work.
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Fig. 7. Results of changing the number of point correspondences with σimage = 0.5
pixel and σangle = 0.5◦.

Table 1. Comparison of Mean Computation Time [msec]

the Number of Point Correspondences
3 4 5 10 50 100 500

Kalantari et al. 75.64 n/a n/a n/a n/a n/a n/a
Fraundorfer et al. 3.62 0.69 0.33 0.32 0.33 0.33 0.38
Proposed 0.38 0.41 0.40 0.40 0.41 0.41 0.48
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Appendix

The proof of that the proposed 4-point algorithm including the 3-point algorithm
is as follows.

Substituting three point correspondences into (17), we have

d

dθ
det(BTB) =

d

dθ
det(ATA)

=
d

dθ
det(A)2

= 2det(A)
d

dθ
det(A).

(20)

We can construct a system of polynomial equations as follows:







f3(c, s) = det(A)
d

dθ
det(A)

∣

∣

∣cos θ=c,
sin θ=s

= 0,

g(c, s) = c2 + s2 − 1 = 0.
(21)

The solutions of Res(f3, g, c) = 0 include that of Res(f1, g, c) = 0.


