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Abstract—In this paper, we propose a camera calibration
method for surveillance cameras that uses the image projection
of parallel 3D line segments of the same length. We assume that
vertical line segments are perpendicular to the ground plane and
their bottom end points are on the ground plane. Under this
assumption, the camera parameters can be directly determined
from at least two line segments without estimating vanishing
points. By extending the minimal solution, we devise a closed-
form solution to the least squares case with more than two
line segments. Lens distortion is jointly optimized in bundle
adjustment. Evaluation of synthetic data showed that the optimal
depression angle of a camera is around 50 degrees. In real data
evaluation, we used the joints of pedestrians as vertical line
segments. The experimental results on public datasets showed
that the proposed method used with a human pose detector
can accurately calibrate wide-angle cameras that have radial
distortion.

I. INTRODUCTION

Surveillance camera calibration has been an important topic
for industrial applications of computer vision. Both intrinsic
and extrinsic parameters must be accurately calibrated to
recognize what is happening in a 3D scene from recorded 2D
images or videos, e.g. pedestrian analysis, traffic estimation. A
general approach for camera calibration is to use a calibration
object such as a checkerboard [1] or a box [2]. However,
these approaches are often impractical for surveillance cameras
because they require a calibration object large enough to
cover the entire filmed area. In addition, traffic may need
to be stopped or restricted during the calibration process if
surveillance cameras are already installed.

To calibrate surveillance cameras without calibration ob-
jects, vanishing point-based methods have been proposed [3]–
[8]. Using vanishing points for camera calibration is one of
the classical approaches in computer vision [9]. For traffic
surveillance cameras, Dubska et al. [3] used the direction
of moving vehicles and the edges of the vehicles to detect
vanishing points. Evans and Ferryman [4] estimated vanishing
points from the foot and head positions of pedestrians observed
by multiple cameras. For single camera calibration, Kusakun-
niran et al. [6] formulated a camera projection matrix from
the vertical vanishing point and the horizontal vanishing line,
which were estimated from a pedestrian’s trajectory. Huang
et al. [5] estimated vanishing points by analyzing periodic
foot movement, assuming that pedestrians walk in a straight
line at a constant speed. Liu et al. [7] showed that vanishing
points can be estimated from pedestrians on a noisy foreground
mask based on prior knowledge about the distribution of the
pedestrians’ relative heights.

The difference between the above methods is essentially
their approach for estimating vanishing points. Reliable and
accurate vanishing point estimation has been a classical issue
in computer vision that is still being investigated today [10],
[11]. This is because parallel 3D lines projected onto an image
generally do not intersect at a single point due to image noise
and limited image resolution, even when using the edges of
buildings or road lanes. Therefore, estimating vanishing points
from pedestrians is considerably more challenging than when
man-made structures are available.

Another important issue not mentioned in the above works
is lens distortion. Vanishing point-based methods implicitly
assume that lens distortion is negligible. However, it is not
unusual for surveillance cameras to have a wide-angle lens
to include as much of the scene as possible. In such cases,
vanishing point estimation may fail because straight lines
become curved [12].

To overcome the above two issues, we propose a camera
calibration method suitable for surveillance cameras. Our only
assumption is that parallel 3D line segments of the same length
are on the ground plane. We do not use any 3D information
about the position of the line segments. The proposed method
has the following two advantages compared with the vanishing
point-based methods: 1) Without using vanishing points, the
focal length and extrinsic parameters are directly derived by
solving the projective equation of line segments. 2) The radial
distortion can be estimated by performing bundle adjustment.
We demonstrate the performance of the proposed method by
conducting both synthetic and real data experiments. The real
data experiments showed that the proposed method can suc-
cessfully estimate camera parameters of wide-angle cameras
by using human body joints as the line segments.

II. RELATED WORK

Calibration using 1-D Objects. Zhang [13] first proposed
a camera calibration method using 1D objects consisting of
three colinear points. The method assumes that one of the end
points is fixed at a single point and the other end points are
freely moving around the fixed point. Hammarstedt et al. [14]
thoroughly analyzed the degeneracy, or the critical motions, of
1D objects. Wu et al. [15] proved that camera calibration with
1D objects is feasible when the objects follow a planar motion
without fixing an end point. Due to the limitations of the object
motion, 2D plane-based methods using a checkerboard [1]
have been standard for single camera calibration rather than
methods using 1D objects.
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Fig. 1. Illustration of camera parameter estimation from parallel line segments.

Vanishing point estimation in radially distorted images.
Wildenauer and Micusik [16] derived a closed-form solution
to estimate radial distortion from a vanishing point. For urban
environments, the Manhattan world assumption is frequently
used for simultaneously estimating vanishing points and radial
distortion [10], [17].
Structure from motion using line segments. Line seg-
ments have been widely used to determine structure from
motion [18], [19] and visual SLAM [20], [21] in poorly
textured scenes where feature points are not available. To
improve robustness in various environments, point-line based
methods, which integrate both point and line information, have
been proposed [22], [23].

III. PRELIMINARIES

A. Problem Formulation

In this paper, we refer to Figure 1 to explain the calibration
problem and basic equations. Without loss of generality, we
can set the origin of the world coordinate system on the ground
plane (zw = 0) and place a camera at height h on the zw-
axis. Then, the camera direction, or the zc-axis, can be set
parallel to the yw-axis of the world coordinate system. In this
configuration, the extrinsic parameter of the camera is defined
by the position [0, 0, h]T and two rotational angles θ and φ
around the xw- and zw-axes, respectively [7].

The surveillance camera is assumed to be a modern digital
camera with zero skew, equal aspect ratio, and the principal
point at the center of the image. Thus, focal length f is the
only intrinsic parameter that needs to be estimated.

All line segments have the same length ` and are perpendic-
ular to the ground plane, i.e. vertical line segments1. Each line
segment consists of two distinct end points, the bottom point
Ai = [xi, yi, 0]

T and the top point Bi = [xi, yi, `]
T. The only

prior knowledge about the line segments is that they are the

1For simplicity, we only discuss vertical line segments in this paper;
however, our methodology is not limited to vertical line segments but can
be applied to parallel line segments in any direction.

same length `2. Their locations on the ground plane (xi, yi)
are not given.

A pair of end points Ai and Bi of an i-th line segment
are observed as image points ai and bi, respectively. The
projective equation can be written by

λiai = K(RAi + t),

µibi = K(RBi + t),
(1)

where

K = diag(f, f, 1), (2)
R = Rz(φ) Rx(θ)

=

cosφ − cos θ sinφ sin θ sinφ
sinφ cos θ cosφ − sin θ cosφ
0 sin θ cos θ

 , (3)

t = −R

00
h

 = −hr3, (4)

λi, µi: projective depth.

Note that the image points ai and bi are represented as their
homogeneous coordinates, 3× 1 vectors.

B. Number of Line Segments Needed to Solve Problem

The goal of the calibration problem shown in Eq. (1)
is to find the intrinsic parameter (focal length f ), extrinsic
parameters (camera height h and rotational angles θ and φ),
projective depth (λi and µi), and the position (xi and yi) and
length ` of each line segment.

Given n line segments, the total number of unknown
variables is 4n + 5, which is 4n for λi, µi, xi, yi and 5 for
θ, φ, f, h, `. However, the degrees of freedom is actually 4n+4
due to the scale ambiguity between λi, µi, xi, yi, h, `. Since the
projection of end points, ai and bi, are represented by 3× 1
vectors of the homogeneous coordinates, a line segment on an
image plane gives us 6 constraints. Thus, the number of line
segments needed to solve the calibration problem is n ≥ 2.

2The proposed method does not necessarily require the absolute value of
`. See Section IV-C



IV. PROPOSED METHOD

A. Minimal Case: 2 Line Segments

This section describes the solution to the calibration prob-
lem with n = 2 line segments. First, we find the projective
depth. Then, we recover the focal length followed by the length
of the line segments, the rotation matrix, the 3D coordinates
of the end points, and the translation vector.

When observing two line segments, we can write four
constraint equations based on Eq. (1) as follows:

λ1a1 = K(x1r1 + y1r2 − hr3), (5)
λ2a2 = K(x2r1 + y2r2 − hr3), (6)
µ1b1 = K(x1r1 + y1r2 + `r3 − hr3), (7)
µ2b2 = K(x2r1 + y2r2 + `r3 − hr3). (8)

where rj denotes the j-th column of R. Subtracting Eq. (7)
from Eq. (5) and Eq. (8) from Eq. (6), we obtain

µ1b1 − λ1a1 = `Kr3,

µ2b2 − λ2a2 = `Kr3.
(9)

Since the right-hand side of both equations are equal each
other, we have a linear equation in the projective depth
λ1, λ2, µ1, µ2:

− λ1a1 + λ2a2 + µ1b1 − µ2b2 = 0 (10)

or in matrix form

Mv =
[
−a1 a2 b1 −b2

] 
λ1
λ2
µ1

µ2

 = 0. (11)

Here, M is a 3 × 4 matrix of rank three. Therefore, v can
be determined as the nullspace vector of M up to scale and
sign. The scale ambiguity of the nullspace vector corresponds
to the scale ambiguity between λi, µi, xi, yi, h, `. We cannot
determine the scale without the absolute value of the scene.
To resolve the sign ambiguity, we consider the orientation of
the projective depth, all of which are positive in this paper, as
shown in Figure 1. Hence, we can obtain a unique solution of
λ1, λ2, µ1, µ2 by

v = abs(null(M)). (12)

Substituting λ1, λ2, µ1, µ2 into Eqs. (5)–(8), we obtain the
following two equations:

K−1(µ1b1 − λ1a1) = `r3,

K−1(λ2a2 − λ1a1) = (x2 − x1)r1 + (y2 − y1)r2.
(13)

The orthogonality condition of rotation matrix, RTR = I, leads
to a constraint equation in f as follows:

cTK−TK−1d = `(x2 − x1)rT3 r1 + `(y2 − y1)rT3 r2 = 0 (14)

where c = µ1b1−λ1a1 and d = λ2a2−λ1a1. Letting cj and
dj be the j-th element of c and d, respectively, focal length f
can be given by the closed-form

f =

√
−c1d1 + c2d2

c3d3
. (15)

Because of the norm constraint ‖r3‖ = 1, we can obtain
the line segment length ` and the third column of the rotation
matrix r3 by

` =
∥∥K−1c

∥∥ , r3 =
1

`
K−1c. (16)

From Eq. (3), the two rotational angles can be calculated by

θ = cos−1 r33, φ = tan−1

(
−r13
r23

)
, (17)

where r3 = [r13, r23, r33]
T. By back-substituting θ and φ into

Eq. (3), we can recover the rotation matrix.
The rest of unknown variables are the positions of the line

segments (xi, yi), camera height h, and translation vector t. As
described in Eq. (4), the translation vector t can be calculated
if the camera height h is given. In other words, we need to
solve for xi, yi, and h.

Eqs. (5) and (6) can be rewritten in matrix form:

[
λ1a1 λ2a2

]
= KR

x1 x2
y1 y2
−h −h

 . (18)

Hence, we can obtain the position (xi, yi) and the camera
height h byx1 x2

y1 y2
h h

 = QRTK−1
[
λ1a1 λ2a2

]
, (19)

where Q = diag(1, 1,−1).

B. Least Squares Case: n > 2 Line segments

This section derives a solution to the least squares case
by extending the minimal solution described in the previous
section.

Given n > 2 line segments, we can obtain a linear equation
in the i-th projective depth similar to Eq. (10):

− λ1a1 + λiai + µ1b1 − µibi = 0. (20)

By stacking n of these equations, we can build a minimization
problem for finding the projective depth

min
v
‖Mv‖2 , s.t. v > 0, (21)

where

M =

−a1 a2 b1 −b2

...
. . .

...
. . .

−a1 an b1 −bn

 ,
v =

[
λ1 · · · λn µ1 · · · µn

]T
.

(22)

Since M is of size 3(n− 1)× 2n, we can solve it with n > 2
line segments in a least-square sense. We can solve Eq. (21)
by using a non-negative least squares method, which is im-
plemented as nnls in SciPy and lsqnonneg in MATLAB.
If we replace the positive constraint v > 0 with a unit norm
constraint ‖v‖2 = 1 to take a simpler approach, the DLT
method [9] can be applied to determine v as the eigenvector
of MTM associated with the smallest eigenvalue.



To find the focal length, we can extend Eq. (14) to obtain
an optimization problem as follows:

min
f

n∑
i=2

(
cTi K

−TK−1di

)2
, s.t. f > 0, (23)

where ci = µibi − λiai and di = λiai − λ1a1. Similarly to
the discussion on Eq. (21), we can solve f in the closed-form
without considering the constraint f > 0,

f =

√
−
∑

(ci,1di,1 + ci,2di,2)(ci,3di,3)∑
(ci,3di,3)2

, (24)

where ci,j and di,j denote the j-th elements of the vectors ci
and di, respectively.

Based on Eq. (16), the third column of the rotation matrix
r3 can be obtained by solving

min
r3

n∑
i=1

∥∥[K−1ci]×r3
∥∥2 , s.t. ‖r3‖ = 1, (25)

where [ ]× is a matrix representation of the vector cross
product. Hence, r3 can be computed as the eigenvector of∑
−[K−1ci]

2
× corresponding to the smallest eigenvalue.

By inserting r3 into Eq. (16), we can formulate ` as

min
`

n∑
i=1

∥∥`r3 − K−1ci
∥∥2 , s.t. ` > 0. (26)

If we ignore the positive constraint, the solution can be written
in the closed-form

` = rT3

(
1

n

n∑
i=1

K−1ci

)
. (27)

Finally, the position (xi, yi) and the camera height h can
be estimated by solving

min
xi,yi,h

n∑
i=1

∥∥∥∥∥∥
xi xi
yi yi
h h− `

− [pi qi

]∥∥∥∥∥∥
2

s.t. h > 0,

(28)

where
[
pi qi

]
= QRTK−1

[
λiai µibi

]
. We disregard the

positive constraint h > 0 and obtain the solution in the closed-
form

xi =
1

2
(pi,1 + qi,1),

yi =
1

2
(pi,2 + qi,2),

h =
1

2n

n∑
i=1

(pi,3 + qi,3 + `) ,

(29)

where pi,j and qi,j are the j-th elements of the vectors pi and
qi, respectively.

C. Recovering Absolute Length

As mentioned in Section III-B, the proposed method does
not handle absolute value due to scale ambiguity. In other
words, the proposed method estimates the ratio between
λi, µi, xi, yi, `, h. The absolute value cannot be recovered
unless one of the real sizes is known, e.g. hreal ← `real/`h.
Even if one of the absolute values is given in advance, the
proposed method can still be applied because the degree of
freedom is still 4n+ 4. In practical situations, we can utilize
vertical bars with known length, such as utility poles and road
marks, as well as people with known height.

D. Bundle Adjustment with Lens Distortion

The proposed method in Sections IV-A and IV-B finds the
solution by minimizing algebraic error, that is not physically
meaningful. To refine the parameters, we perform bundle
adjustment to minimize the reprojection error.

Although we have not discussed lens distortion, it should
be estimated because many surveillance cameras have a wide-
angle lens to capture a broad area in practical applications. To
deal with lens distortion, we initialize the distortion parameter
as zero and optimize it by bundle adjustment.

The minimization of reprojection error is formulated by

min
f,k1,R,t
xi,yi,h

n∑
i=1

dist(ai,Ai)
2 + dist(bi,Bi)

2 (30)

where k1 is the first term of radial distortion and dist(·, ·) is a
function for calculating the L2-distance between an observed
image point and the corresponding 3D point projected onto the
image plane according to the camera parameters. Note that we
exclude the length of the line segments ` in Eq. (30) to fix the
scale.

In Section IV-B, we showed that the least squares case
can be solved by either of the non-negative least squares
methods or the closed-form solutions. Though both methods
can be used to estimate the initial guess for bundle adjustment,
the non-negative least squares methods are preferable from
a theoretical point of view. The computational cost of non-
negative least squares is greater than that of the closed-form
solutions, but there are no significant numerical differences in
the final output from bundle adjustment as long as we have
conducted preliminary experiments. For this reason, we use
the closed-form solutions in the experiments.

E. Degeneracy

In this section, we discuss the degeneracy of the proposed
method. When degeneracy occurs, we cannot estimate or
improve the camera parameters even with additional line
segments. According to Eq. (21), the degeneracy condition
can be analytically determined by finding image points or 3D
points satisfying rank(M) < 2n − 1. Due to limitations of
space, we do not derive rigorous mathematical proof; rather,
we only show examples that can happen in practical situations.

In a simple situation, any two of the four end points are
colinear. This can be observed if two line segments are located



Fig. 2. Median error with respect to the number of line segments. 2 ≤ n ≤ 100 and σ = 2.0. 1000 independent trails for each n.

Fig. 3. Median error with respect to noise level on image points. n = 50 and 0.5 ≤ σ ≤ 10. 1000 independent trails for each σ.

Fig. 4. Mean computational time.

close to each other in 3D space. Furthermore, if the camera
direction (xc-axis) is close to θ = 90◦ , two end points
are projected onto 2D positions very close to each other on
the image plane. In another case, if the camera direction is
approximately θ = 0◦ and almost perpendicular to vertical line
segments, their end points on the image plane become colinear.
In these situations, we can avoid degeneracy if other line
segments in a different direction are available, e.g. horizontal
line segments.

Interestingly, the proposed method is not degenerate if line
segments are on a quadratic curve, such as a circle in 3D
space, which is one of the critical conditions for calibration
methods using 1D objects [13], [14]. Calibration methods
using 1D objects assume that one of the objects’ end points
shares a single 3D point. On the other hand, for the proposed
method, line segments can be scattered as long as their bottom
point is on the same plane. Therefore, the proposed method is
considerably more flexible for practical applications.

V. EXPERIMENTS

This section reports the experimental results of the proposed
method. First, we conducted a synthetic data experiment to
evaluate the numerical accuracy of the proposed method with
respect to variations in the number of the line segments,
image noise sensitivity, and computational time. Then, we per-
formed three real data experiments: 1) quantitative comparison
with the existing method using a checkerboard pattern [1],
2) quantitative evaluation on publicly available datasets by
combining with a human pose detector, and 3) planar image
rectification as another application of the proposed method.
We implemented the proposed method on MATLAB and ran
all experiments on a PC with Core i9-7020X.

A. Synthetic Data Evaluation

We quantitatively evaluated the performance of the proposed
method on synthetic data with the ground truth values. For the
simulation, we set the camera to f = 400 [pixels] with the im-
age resolution 640×480 [pixels], which is a wide-angle camera
having 77.3◦ horizontal field of view (HFOV). In the generated
3D scenes, the camera was located on h = 2.5 [m] with ro-
tational angles φ = 0◦ and θ ∈ {20◦, 35◦, 50◦, 65◦, 80◦}. We
configured various θ to check the stability against depression
angles. Vertical line segments of the length ` = 0.5 [m] were
randomly generated on the ground plane in the field of view
range. Smaller θ enables the camera to shoot wider range of
area where line segments are generated far from the origin.

First, we measured the estimation accuracy with respect to
the number of line segments. We generated 2 ≤ n ≤ 100 line
segments and added Gaussian image noise with zero mean
and σ = 2.0 [pixels] standard deviation to the projected image
points. Figure 2 shows the median error of 1000 independent



Fig. 5. Part of the images used for a comparison with a checker-
board calibration method. The image resolution is 960× 720.

TABLE I
ESTIMATION RESULT OF INTRINSIC PARAMETERS USING THE CHECKERBOARD

IMAGES SHOWN IN FIGURE 5. NUMBERS WITH AN ASTERISK WERE NOT
OPTIMIZED IN BUNDLE ADJUSTMENT.

Method f k1 (cx, cy)

OpenCV 981.7 −0.0501 (487.0 , 369.2 )
974.2 −0.0485 (480.0∗, 360.0∗)

Proposed closed-form 966.2 0.0∗ (480.0∗, 360.0∗)
w/ BA 980.7 −0.0470 (480.0∗, 360.0∗)

HALLWAY: 1240× 1024, 81◦ HFOV 160401_ian2: 1920× 1080, 69◦ HFOV

cam1–00001 cam2–00001 hd 00 28 hd 00 30

Fig. 6. Visualization of real data experiment. Top: Vertical line segments, i.e. connection between neck and mid-hip detected by OpenPose [24]. The change
in line color represents the time course. Bottom: 3D trajectory of pedestrian reconstructed by proposed method. Each color dot corresponds to the line of the
same color in the top images.

trials for each n. The proposed method demonstrated the
highest accuracy for 35◦ ≤ θ ≤ 65◦ except for the camera
height. However, the results also indicate that the accuracy
of θ ∈ {20◦, 80◦} can be improved if we use n > 100 line
segments.

Next, we evaluated the robustness by varying image noise,
where n = 50 and 0.5 ≤ σ ≤ 5. The results of over 1000
independent trials are shown in Figure 3. For a small noise
level σ ≤ 3, there were no significant differences between
various θ. Similarly to the previous experiment, the proposed
method with θ = 50◦ shows the highest robustness.

Finally, we report computational time of the proposed
method. Figure 4 shows the mean runtime of the above two
tests. Whereas θ = 50◦ was the fastest and most stable against
image noise, the runtime of θ = 80◦ was significantly longer
than that of the other angles. The cause for the long runtime is
likely an inaccurate initial guess for bundle adjustment. How-
ever, all results were less than 500 msec which is sufficiently
fast enough for practical applications.

Given to the above results, θ of about 50◦ is suitable for
the proposed method. This coincides with the well-known fact
reported in the literature [1] that camera calibration methods

using a checkerboard perform reliably when tilting the board
about 45◦ towards a camera.

B. Real Data Evaluation

1) Comparison with checkerboard method: We compared
intrinsic parameter estimation by the proposed method with
the existing method using a checkerboard [1] implemented in
OpenCV. A camera was positioned at around h ≈ 40 [cm]
high and rotated around θ ≈ 45◦ and φ ≈ 0◦. Since the
above configuration was manually set and the OpenCV method
calculates extrinsic parameters for each image independently,
we compared only intrinsic parameters in this experiment.

We placed a 9 × 6 checkerboard pattern on a desk so that
the grid pattern was perpendicular to the desk plane. Figure 5
shows four of 14 captured images which have a resolution
of 960× 720. The OpenCV method used all detected corners
with known 3D and 2D coordinates, i.e. 54 corners per image.
Meanwhile, the proposed method only used top and bottom
corners with image coordinates, i.e. nine line segments per
image. As default values, we fixed the principal point at the
image center: (cx, cy) = (480, 360).



TABLE II
QUANTITATIVE RESULTS OF THE REAL DATA SHOWN IN FIGURE 6. NUMBERS WITH AN ASTERISK WERE NOT OPTIMIZED IN BUNDLE ADJUSTMENT.

Sequence Method f (k1, k2, k3) (cx, cy) θ [deg] φ [deg] h [m]

HALLWAY Ground truth 747.7 (−0.3559, 0.1542,−0.0328) (646.2 , 518.5 ) 27.73 6.894 2.780
cam1–00001 Proposed w/ BA 715.8 (−0.2169, 0.0∗ , 0.0∗ ) (640.0∗, 512.0∗) 28.20 1.665 2.731

HALLWAY Ground truth 731.0 (−0.3615, 0.1560,−0.0331) (650.4 , 518.2 ) 30.35 1.399 2.788
cam2–00001 Proposed w/ BA 713.8 (−0.2129, 0.0∗ , 0.0∗ ) (640.0∗, 512.0∗) 27.65 1.665 2.659

160401_ian2 Ground truth 1396.5 (−0.2867, 0.1860,−0.0509) (955.0 , 562.6 ) 40.02 2.261 3.128
hd 00 28 Proposed w/ BA 1386.4 (−0.2038, 0.0∗ , 0.0∗ ) (960.0∗, 540.0∗) 41.77 −0.722 3.150

160401_ian2 Ground truth 1407.9 (−0.2838, 0.1887,−0.0537) (948.2 , 562.5 ) 12.78 −3.616 1.974
hd 00 30 Proposed w/ BA 1330.4 (−0.2462, 0.0∗ , 0.0∗ ) (960.0∗, 540.0∗) 11.93 −3.158 1.944

Table I shows the estimated values of focal length f and
the first radial distortion term k1. Although only image points
were available, the proposed method successfully estimates
the parameters including radial distortion comparable with the
OpenCV method.

2) Evaluation on open dataset: We evaluated the pro-
posed method on two publicly available datasets: HALLWAY
sequence from Task Decomposition dataset [25]3 and
160401_ian2 sequence from Panoptic Studio dataset [26]4.
The two datasets provide various video sequences of people
performing simple actions and social interactions captured by
calibrated multi-view cameras. We chose a total of four videos,
two from each dataset, that show people walking around.

First, we selected a pedestrian in each video and used
OpenPose [24] to detect 2D keypoints of the pedestrians (neck
and mid-hip) through all video frames, as shown in the top
row of Figure 6. The detected points were treated as the two
end points of a vertical line segment. Then, we estimated
the camera parameters as well as the 3D position of the line
segments in the absolute scale based on the pedestrian’s height,
which was measured by triangulation using the provided
calibration data. The bottom row of Figure 6 visualizes the
reconstructed trajectories of the pedestrian for each video.
Note that the proposed method utilizes the absolute length
of the line segments only for solving the scale ambiguity. For
trajectory visualization, we did not use any 3D points obtained
by the above triangulation procedure.

Table II summarizes the quantitative result. On the
160401_ian2 sequence, we successfully obtained both in-
trinsic and extrinsic parameters close to the ground truth
even though the proposed method deals with partial intrinsic
parameters. The estimated intrinsic parameters, especially the
radial distortion term, for the HALLWAY sequence seemed less
accurate. However, the undistorted images in Figure 7 indicate
that the difference in their visual quality is minimal.

These results indicate that we can calibrate surveillance
cameras in the absolute scale by observing a pedestrian with
known height. In addition, the proposed method is more

3https://tev-static.fbk.eu/DATABASES/TASK DECOMPOSITION.html
4http://domedb.perception.cs.cmu.edu/

feasible in practice than the existing methods [3]–[8] which
do not consider lens distortion.

3) Planar image rectification: This section describes an
application of the proposed method other than camera cal-
ibration. As described in Section IV, the proposed method
estimates (xi, yi) coordinates and the length `. Since two bot-
tom points and their corresponding top points are obtained, we
can calculate the homography matrix for metric rectification
of planar images.

Figure 8 shows the qualitative results of planar image
rectification on Stanford Mobile Visual Search
dataset [27]5. We manually selected two parallel line segments
on the images. It is widely known that metric rectification
can be recovered using vanishing points [9]. However, the
proposed method can directly perform metric rectification
without estimating vanishing points.

VI. CONCLUSION

We proposed a camera calibration method that uses parallel
line segments of the same length and is suitable for surveil-
lance cameras. We showed that at least two line segments
provide sufficient constraints for determining focal length and
extrinsic parameters. We also extended the least squares case
for more than two line segments. The radial lens distortion was
additionally optimized in bundle adjustment. Furthermore, we
discussed degeneracy conditions that cause unstable calibra-
tion. We conducted both synthetic and real data experiments to
evaluate the proposed method. The synthetic data experiments
showed that the proposed method is stable at a depression
angle of about 50 degrees, which is a similar condition for
the existing calibration method using a planar pattern. In
the real data experiments, we used a pose detector to detect
the backbone of pedestrians as vertical line segments. We
demonstrated that the proposed method correctly calibrated
wide-angle cameras which was previously not feasible with
the existing methods that use vanishing points.

5https://purl.stanford.edu/rb470rw0983

https://tev-static.fbk.eu/DATABASES/TASK_DECOMPOSITION.html
http://domedb.perception.cs.cmu.edu/
https://purl.stanford.edu/rb470rw0983
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Fig. 7. Undistorted images of HALLWAY sequence using the intrinsic
parameter in Table II. Top: Ground truth. Bottom: Proposed method.

Fig. 8. Qualitative results of planar image rectification on Stanford
Mobile Visual Search dataset.
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