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ABSTRACT

This paper proposes a novel fast and robust homography es-

timation by adaptively controlling the threshold of graduated

non-convexity (GNC). Based on the fact that GNC is a vari-

ant of deterministic annealing, we provide a new method for

updating the inlier threshold at each GNC iteration by utiliz-

ing the statistical properties of residuals of potential inliers.

Contrary to RANSAC, our approach gives the same unique

parameter for a single input due to without random sampling.

Moreover, computational time increases linearly against out-

lier ratio changes, whereas RANSAC increases exponentially.

Synthetic data evaluation shows that the proposed method is

more robust and faster than RANSAC for highly contami-

nated data containing more than 80% outliers. Additionally,

we demonstrate that our method works on severe real images

that the state-of-the-art RANSAC method fails.

Index Terms— Homography, Robust Estimation, Gradu-

ated Non-Convexity, RANSAC

1. INTRODUCTION

Homography estimation between two images of a 3D plane is

a fundamental problem in computer vision. A typical way to

find a homography is to use a set of point pairs by matching

feature points on two images. Those point correspondences

generally consist of two groups: inliers that satisfy a homog-

raphy equation and outliers that wrongly matched points. It

is not a rare case where outlier ratio exceeds 50%, therefore,

homography estimation needs to be robust against outliers for

practical applications.

Robust parameter estimation from noisy data contami-

nated by outliers has been extensively studied over the last

few decades. Typical methods are random sample consensus

(RANSAC) [1], M-estimator [2], and iteratively reweighted

least squares (IRLS) [3].

RANSAC has been virtually the standard method for

problems of geometric parameter estimation, e.g., line fit-

ting and multi-view geometry. The main reason is that its

algorithm simpleness and capability on highly contaminated

data consist of more than 50% outliers. Despite being widely

used, RANSAC has several unsolved drawbacks [4] caused

by random sampling and a predefined threshold. To deal with

those issues, numerous variants have been proposed for accel-

erating computational time [5, 6], improving solution stabil-

ity [7–9], and determining threshold automatically [10–12].

Some of these methods can be merged into a single frame-

work. Since introducing more techniques generally requires

handling more parameters, integration have to be done care-

fully so that the simpleness of RANSAC scheme would not

be lost. Actually, USAC [13], which is an unified implemen-

tation of RANSAC variants, fails to compute homography on

images with a significant viewpoint change [12].

IRLS has been widely used for conducting regularized

least squares [14,15]. Since IRLS and M-estimator are math-

ematically equivalent as proved by Black and Rangarajan [3],

IRLS-based methods are also sensitive to the threshold. How-

ever, it is heuristically determined depending on the problem.

One way to robustify IRLS is to incorporate graduated non-

convexity (GNC) [16], which smooths a non-convex objective

function by gradually decreasing a large threshold. In exist-

ing methods of IRLS with GNC, the threshold is updated by

a simple rule, i.e. just multiplying a predefined scale factor

at each iteration. On the other hand, how to determine the

decreasing factor has not been discussed well yet.

Recently, deep neural networks have been applied to

geometric problems [17–19]; however, the conventional ap-

proaches based on optimization theory still have advantages

against those deep-based methods in terms of theoretical

aspects and computational efficiency.

This paper proposes an IRLS method with a novel adap-

tive GNC for fast and robust homography estimation. The

proposed IRLS-GNC method has two advantages against

RANSAC: a unique solution for each trial, and a moderate

increase of computational time on outlier ratio. First, we

point out that minimizing an objective function of IRLS is

equivalent to jointly finding the best homography and maxi-

mizing the number of inliers under a given threshold. Then, a

new adaptive update rule is derived for determining the GNC

threshold by integrating the classical constant decreasing with

the proposed method based on residual analysis of potential

inliers. By conducting a synthetic and a real data experi-

ment, we show that IRLS with the proposed GNC method

outperforms RANSAC and USAC.
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2. PROPOSED METHOD

This section begins with interpreting the IRLS formulation

for homography estimation. Then, we provide a method for

adaptively determining the threshold at each GNC iteration.

Finally, we describe how to obtain the best result after GNC

is stopped. The whole procedure is outlined in Algorithm 1.

2.1. Interpretation of IRLS on homography estimation

IRLS is an optimization method for solving regularized least

squares problems by iteratively updating a weight wi ∈ [0, 1]
of an i-th residual ri. IRLS for estimating an unknown pa-

rameter vector θ can be written of the form

min
θ,w

E(θ,w) =
n
∑

i=1

wi r
2
i + λΦ(wi), (1)

where w = [w1, . . . , wn]
T, λ is a nonnegative scalar that

controls the strength of Φ(wi), and Φ(wi) is a function that

behaves Φ(wi) → 0 as wi → 1 and Φ(wi) → 1 as wi → 0.

For minimizing Eq. (1), IRLS conducts an alternate opti-

mization over θ and w, instead of solving ∂E/∂θ =0 and

∂E/∂wi = 0, simultaneously. First, we solve ∂E/∂θ = 0
w.r.t. θ by fixing wi. Then, substituting θ into ∂E/∂wi = 0,

we update wi. Iterating the above procedure until conver-

gence, we finally obtain the solution of θ.

The first term,
∑

wi r
2
i , is called data term that repre-

sents the sum of weighted squared residuals. Thus, minimiz-

ing
∑

wi r
2
i w.r.t. θ is equivalent to finding a homography

parameter that fits to point correspondences having a high

weight. The second term, λ
∑

Φ(wi), is known as regular-

ization term, which prevents the first term not to be overly

minimized.

Since a weight wi is given by its corresponding residual

ri with λ and ∂Φ/∂wi, λ can be interpreted as the threshold

that determines whether the i-th point pair {xi ↔ x
′

i} is an

inlier or an outlier, similarly to RANSAC. Addition to that,

considering the weight range 0 ≤ wi ≤ 1, we can see that a

weight wi represents the inlier probability of the i-th point.

From this, minimizing E(θ,w) with a certain λ can be

interpreted that simultaneously finding the best homography

transformation and maximizing the number of inliers.

2.2. Adaptive GNC

The key to obtain a good solution to E(θ,w) of Eq. (1) is to

choose an adequate value of λ. The simplest way is to use

a constant value like M-estimators; however, such methods

often get trapped in an undesirable local minimum because

E(θ,w) is generally non-convex. To avoid the local min-

imum issue, Blake and Zisserman [16] proposed graduated

non-convexity (GNC) written by

lim
λmax→λmin

min
θ,w

E(θ,w). (2)

As shown in Eq. (2), GNC is a kind of deterministic anneal-

ing [20] starting with a very large λmax to make E(θ,w)
smooth and close to convex. Then, λ is gradually decreased

until reaching to the minimum value λmin.

At each IRLS iteration, we have potential inliers whose

weight is greater than 0.5. On the assumption of least squares,

residuals of the potential inliers follow a normal distribution

of mean µ and standard deviation σ. Based on that, we can

determine λ as the confidence interval, λ = µ + βσ, so that

low potential inliers having large residuals will be regarded as

outliers at the next iteration. In short, a point having |ri| <
µ+ βσ should be an inlier and a point having |ri| > µ+ βσ
should turn to be an outlier.

The convergence speed with the above update rule is

sometimes slow due to very small difference between the old

and the new thresholds. Specifically, it happens in either case

of high outlier ratio or large β or close to λmin. To accelerate

this, we introduce two techniques.

The first technique is to use a constant decreasing, cλ,

as in the conventional GNC methods. Taking the smaller of

µ+ βσ and cλ, we can obtain the better threshold that surely

proceeds the convergence. The second one is to prepare the

minimum update value δ in case of that the update difference

by the first technique is too small. For example, if the dif-

ference is less than 0.5 pixels when using a geometric cost

function, the result of the next iteration is predicted to be al-

most same to that of the current iteration.

To summarize, the proposed adaptive GNC can be written

as follows:

λtemp = min(cλ, µ+ βσ), (3)

λnew =

{

λtemp − δ if λtemp − λ < δ

λtemp else
(4)

2.3. How to choose the best result

After performing GNC with the new update rule described in

Section 2.2, the iterative procedure finally stops at λmin. Note

that λmin is not the best threshold that maximizes the number

of inliers since reaching to λmin is merely a stopping criterion

for GNC.

Inspired by Litman et al. [12], we assume that the best

inlier ratio is not sensitive to the perturbation of a threshold

λ. Since λ decreases monotonically and smoothly according

to Eqs. (3) and (4), if the above assumption does not hold,

the inlier ratio has several peaks against different thresholds.

Therefore, we determine the best threshold λbest that gives

the best inlier ratio by checking the slope of the threshold–

inlier ratio curve.

At an iteration, we can estimate the current inlier ratio p
by the cumulative average of the weight vector w:

p =
1

n

n
∑

i=1

wi. (5)



Algorithm 1 Homography Estimation by Adaptive GNC

Input: 2D point correspondences {xi ↔ x
′

i} (1 ≤ i ≤ n)
Output: Homography H, weight w, threshold λ

1: H←I, w←[1, . . . , 1]T, λ←λmax, p←1, ∆pmin←∞
2: while λ ≥ λmin

3: r← computeResiduals(H, x, x′)
4: w← calcWeight(λ, r)
5: H← optimizeHomography(H, x, x′, w)
6: [µ, σ]← calcMeanStd( sqrt(r(w > 0.5).∧2) )
7: λtemp ← min(cλ, µ+ βσ)
8: if λtemp − λ < δ
9: λnew ← λtemp − δ

10: else

11: λnew ← λtemp

12: end

13: pnew ← 1/n
∑

wi ⊲ Inlier ratio estimation

14: ∆p← |pnew − p|/|λnew − λ| ⊲ Slope of λ–p curve

15: if ∆p < ∆pmin ⊲ Store tentative best

16: Hbest←H, wbest←w, λbest←λnew, ∆pmin←∆p
17: end

18: λ← λnew, p← pnew
19: end

20: return Hbest, wbest, λbest

The slope between the current and the next iteration is given

by

∆p =
|pnew − p|

|λnew − λ|
, (6)

where pnew and λnew are an inlier ratio and a threshold at the

next iteration, respectively. The current parameters are stored

as the tentative best if ∆p is smaller than the smallest slope

∆pmin, then ∆pmin is replaced with ∆p. Consequently, we

can obtain the best parameters after the convergence.

See Fig. 1, which visualizes the proposed method de-

scribed in Sections 2.2 and 2.3. In this example, the best

threshold λbest is determined as 26 pixels at the 68th iteration

when the smallest slope is observed. After that, inliers are

overly trimmed out due to too small thresholds.

3. EXPERIMENT

In this section, we report two experimental results on syn-

thetic data and real data. First, by the synthetic data eval-

uation, we mainly discuss the performance of the proposed

approach applied with different cost functions. Then, we

choose promising combinations and compare with the exist-

ing RANSAC-based methods in real data evaluation.

We configured the GNC parameters by preliminary exper-

iments that c = 0.95, β = 2, λmax = 104, λmin = 1, and δ =
0.5. Also, we used the truncated L2 function Φ(wi) = wi−1
by considering the similarity with RANSAC. All experiments

were conducted on MATLAB and Core i7-6700.
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Fig. 1. Top: The threshold–inlier ratio curve. Middle: Resid-

ual histograms split into inliers (green) and outliers (purple)

by λ (blue dotted line). Bottom: Illustrations of inlier/outlier

pairs corresponding to the middle figures.
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Fig. 2. Results of the synthetic data evaluation.

3.1. Synthetic data evaluation

This section describes a quantitative evaluation on the per-

formance of the proposed method by comparing to the naive

RANSAC1 in synthetic data experiments. We implemented

five variations of IRLS with the adaptive GNC corresponding

to five cost functions [21]: algebraic, Sampson, reprojection,

single transfer, and symmetric transfer errors. RANSAC was

set to have 104 maximum iterations and 3– or 5–pixel thresh-

old. We randomly generated a homography transformation

induced by 1000 point correspondences with Gaussian noise

of zero mean and 2.0 standard deviation. Then, we varied

outlier ratio from 10% to 90% to measure the following cri-

teria: the relative homography error, computational time, and

F1 score2 of predicted inliers.

1Implemented by http://www.peterkovesi.com/matlabfns
2Harmonic mean of the precision and the recall rates of predicted inliers.



(a) Graf (155, 27%) (b) Bark (341, 77%) (c) DayNight (929, 12%) (d) Cap. Reg. (994, 12%)

Fig. 3. Real image dataset with the number of the point correspondences and the inlier ratio.

Table 1. Quantitative results on the real images shown in Fig. 3.

Image
IRLS+Single IRLS+Symmetric RANSAC USAC

error time F1 error time F1 error time F1 error time F1

(a) 0.52 90 0.78 2.47 235 0.74 2.55 1495 0.73 2.04 11 0.52

(b) 0.03 18 0.92 0.02 166 0.92 0.02 4 0.91 0.02 5 0.92

(c) 0.001 185 0.99 1.36 604 0.91 30.3 3518 0.70 NaN 9 0

(d) 92.8 230 0.18 1.23 657 0.98 11.8 3670 0.29 NaN 10 0

Figure 2 shows the results of average values over 100 in-

dependent trials for each outlier ratio. Among the five IRLS

methods, those using the single transfer error and the symmet-

ric transfer error gave accurate results in terms of parameter

estimation, which is comparable with RANSAC while main-

taining a moderate increase of runtime against the outlier ratio

change. In addition, the F1 score indicates that the two IRLS

methods are able to obtain more inliers than RANSAC cor-

rectly and stably.

Interestingly, the five proposed methods have different

tendencies. Using the two non-geometric cost functions, the

algebraic and the Sampson errors, result in bad convergence

even for low contaminated data, such as < 30% outliers. On

the other hand, although the reprojection error is geometri-

cally meaningful, its optimization is not as stable as the single

and the symmetric transfer error minimization. The cause of

the instability can be considered that the reprojection error

minimization was trapped into local minima due to many

unknown variables. These synthetic data experiments reveal

that selecting a proper cost function is crucial for IRLS-based

methods to achieve good performance.

3.2. Real data evaluation

According to Section 3.1, we selected two proposed meth-

ods, IRLS+Single and IRLS+Symmetric, to be evaluated in

this experiment. Then, we compared these methods with

RANSAC and USAC [13]. RANSAC and USAC were

configured to have 104 maximum iterations and a 3–pixel

threshold, and other parameters were set by default val-

ues. We picked four image pairs from publicly available

datasets [13, 22], as shown in Fig. 3. Similarly to the syn-

thetic data experiments, we measured the same three criteria

to evaluate the existing and the proposed methods.

Table 1 summarizes quantitative results for each im-

age pair. Note that the computational time is denoted

in milliseconds. Among the four methods, the proposed

IRLS+Symmetric only works for all four images. Despite

that USAC utilizes many techniques to complement the weak-

ness of RANSAC, it fails on the two images, Figs. 3(c) and

3(d). From this, we can say that RANSAC variant integration

becomes unstable unless their parameters are carefully tuned

depending on input data. Strictly speaking, the computational

time evaluation is not a fair comparison because USAC is

written in C++ and the others in MATLAB. However, as

described in the previous section, the computational time

by IRLS+Single and IRLS+Symmetric increases moderately

against the increase of outlier ratio. Therefore, the proposed

IRLS-based methods are expected to be sufficiently fast for

real-time applications even with highly contaminated data if

implemented on C++. Other three methods are better than

IRLS+Symmetric in some aspects; however, we can conclude

that IRLS+Symmetric is superior to them by considering the

trade-off issues.

4. CONCLUSIONS

In this paper, we have presented a fast and robust homography

estimation using an IRLS with an adaptive GNC. We have val-

idated by experiments that the proposed adaptive GNC with

symmetric transfer error minimization outperforms RANSAC

and USAC on challenging dataset, where outlier ratio is more

than 80%. Although this paper addresses only on homogra-

phy estimation, our proposed IRLS approach could be applied

on other parameter estimation problems in computer vision

as well, such as plane fitting, PnP problem, and fundamental

matrix estimation.
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