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ABSTRACT

This paper proposes a novel sampling method for accelerat-

ing RANSAC family on 2D homography estimation. From

the initial set of matched points, the proposed method gen-

erates a promising reduced subset having higher inlier ratio

than the initial set by utilizing pixel values of the matches.

Regarding pairs of the pixel value as two dimensional scat-

tered points, we estimate the global brightness consistency of

the pixel values. Then, points that violate the global bright-

ness consistency are removed from the initial point set. Incor-

porating the proposed method with RANSAC and USAC, we

demonstrate that the number of iterations and computational

time are both significantly reduced by orders of magnitude

while maintaining accuracy of homography estimation.

Index Terms— RANSAC, robust estimation, outlier re-

jection, 2D homography

1. INTRODUCTION

Estimating a 2D homography parameter between two images

is a classical but fundamental problem for computer vision ap-

plications such as object recognition [1, 2], panorama stitch-

ing [3, 4]. Recent trend in those applications is to handle thou-

sands or millions of images, therefore, fast algorithms have

been studied for each processing step: feature point detection

and description, descriptor matching, and parameter fitting.

For the first and second steps, many efficient feature point

detectors and descriptors have been proposed [5]. However,

irrespective of the method we use, mismatched points are in-

evitable due to changes of viewpoint, illuminations, and oc-

clusions. Therefore, the final parameter estimation step must

be robust against mismatched points, called outliers.

The random sample consensus (RANSAC) [6] is one of

the standard approaches for estimating a parameter from a

set of data points contaminated by outliers. As the name im-

plies, RANSAC repeatedly performs generating a hypothesis

of the parameter from randomly sampled points and verifying

its correctness by counting the number of inliers, for which

error against the hypothesis is less than a predefined thresh-

old. The stopping criterion of RANSAC, the minimum num-

ber of iterations to obtain the best parameter, can be given by

N = log(1 − p)/ log(1 − ws), where w is inlier ratio in the

whole data, s is the sample size to generate a hypothesis, and

p is the probability that at least one of the random points has

no outliers, which is typically set to p = 0.99. As the equation

implies, RANSAC becomes exponentially slower for lower

inlier ratio and larger sampling size.

Since it is theoretically impossible to reduce N by sam-

pling less than four (s < 4) points for 2D homography es-

timation in general cases, the motivation of this paper is to

generate a small subset from the initial data points, which is

expected to have higher inlier ratio than the initial data. As

shown in Fig.1, generating such subset is particularly effec-

tive for severely contaminated data.

For generating promising subsets, some methods have

been proposed in the literature [7, 8, 9], which utilize a

prior information on image content. The progressive sample

consensus (PROSAC) [7] divides the initial point set into

several subsets based on sorted matching scores of feature

points. The hypothesis-testing step starts by the top-ranked

subset, then, shifts to lower quality subsets until convergence.

Although this strategy enables to reduce the number of iter-

ations, solutions returned by PROSAC are often trapped into

local minima, which fit a few high quality points concen-

trated in a small area on the input image space. Assuming

that a large image area contains more inliers than smaller

areas, GroupSAC [8] applies image segmentation or optical

flow on the initial point set to find subsets. While Group-

SAC experimentally showed an advantage of the grouping

strategy, a trade-off problem has not been discussed well yet

between grouping accuracy, grouping efficiency, and sam-

pling improvement. Universal RANSAC (USAC) [9], the

state-of-the-art of RANSAC family, efficiently delivers stable

solutions by integrating various techniques proposed over

the years; the PROSAC sampling, sample validation before

parameter estimation, SPRT test [10] for model validation,

DEGENSAC [11] for checking parameter degeneracy, LO-

RANSAC [12] for faster convergence. Those works showed

that utilization of a priori information on image content has a

large potential to accelerates RANSAC.

This paper proposes a novel sampling method for gener-

ating a promising subset of a planar object matching based on

correlation analysis of corresponding pixel values. Assuming
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Fig. 1. The number of iterations N and the concept of the pro-

posed method. Since a three-point method does not exist for

2D homography estimation, our approach aims to generate a

reduced subset, which has higher inlier ratio than the original

point set.

that a Lambertian plane is lit by a single dominant light, we

find out that pixel values of inlier points are globally corre-

lated. Then, we generate a subset by removing points that do

not satisfy the global brightness consistency. We call this new

sampling strategy based on the global brightness consistency

as GBC sampling. The process to estimate the global bright-

ness consistency is equivalent to a two dimensional correla-

tion analysis, therefore, an additional computational time is

negligibly small in the overall runtime. Experiments on real

data show that the proposed method significantly accelerates

RANSAC family by orders of magnitude, in spite of a quite

simple algorithm.

2. GLOBAL BRIGHTNESS CONSISTENCY

In this paper, we assume that a plane to be matched has Lam-

bertian surface and is lit by a single dominant light. This as-

sumption leads to the following predictions about the relation

between pixel values of inliers.

Let Ii and Ji be pixel values of i-th inlier feature points

on images I and J .

• If the light and the object did not move, Ii and Ji are

nearly equal. (Ji ≈ Ii)

• If the angle or the strength of the light changed, Ii and

Ji are in linear or log-linear. (Ji = αIi + β or Ji =
αIβi )

• If camera response functions of the images are highly

non-linear, the relation of Ii and Ji can be approxi-

mated by a polynomial equation. (Ji =
∑n

k=0
ckI

k
i )

Due to the Lambertian assumption, the above brightness vari-

ations are globally consistent, i.e., the coefficients α, β, ck
are common for all inliers and not dependent on each point.
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Fig. 2. (top) Line drawing of matched feature points: inliers

in green and outliers in magenta. Only 20% of matches are

shown for ease of viewing. (bottom) Scatter plot of RGB val-

ues of all matched points in the top images. A pixel value

Ii of the i-th point in the left image corresponds to a pixel

value Ji of the i-th point in the right image. Red, green, and

blue dots show inlier colors on each channel and small black

pluses show outlier colors.

In other words, points that do not satisfy the global brightness

consistency are potentially outliers. Moreover, we can expect

that the dominant light assumption holds in various kinds of

scene, e.g., outdoor sequences under the sunlight and indoor

sequences with gradual shading.

Figure 2 visually shows this concept. Inlier pixel values,

RGB dots in the bottom figure, are distributed in a certain

area, which seems to be on a line or curve with some dis-

tance. On the other hand, outlier pixel values, black pluses,

seem to be uniformly distributed around the inlier area. This

result indicates that it is possible to distinguish inliers and out-

liers if the promising area can be determined by analyzing the

distribution of pixel values.

3. PROPOSED METHOD

This section describes a method for determining a promising

area of scattered color points (Ii, Ji), where most inliers lie

and follow the global brightness consistency. We will explain

the proposed method, the GBC sampling, step-by-step with

referring to Fig. 3, which illustrates the algorithm.

Step 1: Pick pixel values (Ii, Ji) of all initial matches on

RGB channels.

Step 2: Regarding pixel values (Ii, Ji) as scattered two di-

mensional points, calculate a covariance ellipse on each
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Fig. 3. Algorithm overview of RANSAC integrated with the

proposed method, the GBC sampling. Note that inliers (color

dots) and outliers (black pluses) are not separated before the

GBC sampling but just shown for ease of understanding.

channel by performing principal component analysis.

The length of major and minor axes can be given s1σ1

and s2σ2, where σ1 and σ2 represent the square root of

the eigenvalues of the covariance matrix, and s1 and s2
are scale factors.

Step 3: Extract subsets TR, TG, TB , whose points are inside

the covariance ellipse on each channel.

Step 4: Calculate a reduced subset M as an intersection of

the three subsets, M = TR ∩ TG ∩ TB . This step is

omitted for grayscale images.

Step 5: Execute RANSAC or its variants on the reduced sub-

set M. We obtain inliers of the subset and a tentative

parameter fitting on the inliers.

Step 6: Apply guided matching [13] on the initial point set.

Finally we obtain more inliers and a refined parameter.

The key of the GBC sampling is the Step 2 for deter-

mining the size of the subset on each channel. As described

in Section 2, we expect that inlier and outlier colors follow

a normal and uniform distribution, respectively. According

to the central limit theorem, the union of both color points

are assumed to be follow a heavy-tailed normal distribution.

Thus, regarding the corresponding color points (Ii, Ji) as

scattered 2D points, we fit a confidence ellipse on the color

points by two dimensional correlation analysis in order to ex-

tract a promising area. Under a normal distribution, the scale

factors s1 and s2 should be determined so that the ellipse

covers ≥ 90% and ≤ 50% points for the major and minor

axes, respectively. For instance, (s1, s2) = (3.0, 0.5) has

99% and 38% confidence intervals for each axes.

To fit the covariance ellipses at the Step 2, we implicitly

assume an independence between the color channels. To be

exact, RGB values at an image point are actually not unique

on spectral space. However, the dependency or the over-

lapped wavelength is very slight in general. Thus, we ignore it

in this paper and will experimentally validate this assumption

in Section 4.

The Step 6, guided matching on the initial point set, is car-

ried out to obtain more inliers and a more accurate parameter

since the subset M does not contain all inliers.

4. EXPERIMENTS

4.1. Dataset

We have tested the performance of the proposed method on

publicly available image datasets [9, 14, 15]. We chose image

pairs taken under different illumination conditions and per-

formed feature point matching by using SIFT implemented on

VLFeat [16] if the point information is not provided. To gen-

erate the groundtruth data, we performed RANSAC with fixed

107 iterations and 2.0-pixel threshold on the feature point

pairs. Due to limitations of space, we selected four sequences

from the datasets, which are adequate to demonstrate effec-

tiveness of the proposed method in realistic situations. We in-

tegrated the GBC sampling with RANSAC and USAC, then,

evaluated performance improvements. In the experiment, op-

tional parameters of RANSAC and USAC were configured

to the default values as provided by the USAC-1.0 source

code. All evaluations were executed on a Core i7-6700 PC

and MATLAB 2016b.

4.2. Results

Table 1 summaries experimental results that are mean values

of 100 trials for each sequence.

4.2.1. Inlier ratio

The Dataset column of Table 1 clearly shows that inlier ratio

of subsets generated by the GBC sampling is significantly in-

creased by nearly or more than 10% in all sequences. From

this, we see that the global brightness consistency holds in

real situations.



Table 1. Results on real images. The number of points (m), inlier ratio (w [%]), the number of iterations (iter), computational

time in milliseconds (time), acceleration factor of runtime against the original RANSAC (speed-up), and relative error of

estimated parameter against the groundtruth in percentage (err).

Dataset Results

Images Point set m w Method iter time speed-up err

Initial 717 43.0 RANSAC 282 4.6 1 2.07

Reduced 141 71.6 USAC 24 5.0 0.92 1.23

+28.6 RANSAC+GBC 44 0.6 8.57 1.26

USAC+GBC 3 1.4 3.20 1.24

Initial 191 69.6 RANSAC 44 0.5 1 0.97

Reduced 36 86.1 USAC 5 1.5 0.36 0.07

+16.5 RANSAC+GBC 21 0.3 2.30 0.10

USAC+GBC 5 0.6 0.86 0.08

Initial 286 14.3 RANSAC 25208 262 1 3.53

Reduced 103 24.3 USAC 4113 10 54.6 5.42

+10.0 RANSAC+GBC 2629 22 12.4 4.92

USAC+GBC 37 1 317.6 1.31

Initial 979 12.5 RANSAC 44675 883 1 0.55

Reduced 206 29.6 USAC 267047 243 3.8 0.08

+17.1 RANSAC+GBC 1161 13 67.9 0.40

USAC+GBC 5 1 883 0.08

4.2.2. Efficiency

The results with and without the GBC sampling are listed in

the Results column of Table 1. Although the runtime includes

an additional time spent by the proposed method, it was neg-

ligibly small.

The increase of inlier ratio, which is mentioned in Sec-

tion 4.2.1, leads to a significant reduction of the number of

iterations by orders of magnitude. Consequently, the compu-

tational time is accelerated by ranging from ×2.31 to ×883.

An interesting result is that RANSAC+GBC is faster than

the naive USAC and USAC+GBC in the two sequences. Im-

plementing USAC requires many techniques; however, this

result suggests that a simple RANSAC with the GBC sam-

pling can be efficient enough depending on a scene.

4.2.3. Parameter accuracy

The estimation error of homography transformation was

slightly improved or almost comparable. What we would

like to emphasize is that the proposed method achieved the

comparable accuracy with significantly saving computational

time, as described in Section 4.2.2.

5. CONCLUSIONS

In this paper, we have presented a simple and powerful

method, called GBC sampling, for accelerating RANSAC

family on 2D homography estimation by using pixel values

as a priori information. We made an assumption on a scene

illumination and a planar object so that pixel values of inlier

points follow the global brightness consistency. Under the as-

sumption, we proposed a method for generating a promising

reduced subset of which inlier ratio is higher than the initial

point set. Real image experiments showed that the proposed

method significantly reduces the number of iterations and

computational time by orders of magnitude while keeping

parameter estimation accuracy. The experiments in this paper

are small enough to verify the concept; however, an objec-

tive evaluation on a large dataset is required to show more

effectiveness and applicability. Furthermore, expanding the

proposed approach to other parameter estimation problems,

e.g., fundamental matrix estimation, is also an interesting

topic as a future work.
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