
Solution Space Analysis of Essential Matrix
based on Algebraic Error Minimization

Gaku Nakano1

NEC Corporation, Japan
g-nakano@nec.com

Abstract. This paper reports on a solution space analysis of the essen-
tial matrix based on algebraic error minimization. Although it has been
known since 1988 that an essential matrix has at most 10 real solutions
for five-point pairs, the number of solutions in the least-squares case has
not been explored. We first derive that the Karush–Kuhn–Tucker con-
ditions of algebraic errors satisfying the Demazure constraints can be
represented by a system of polynomial equations without Lagrange mul-
tipliers. Then, using computer algebra software, we reveal that the simul-
taneous equation has at most 220 real solutions, which can be obtained
by the Gauss-Newton method, Gröbner basis, and homotopy continua-
tion. Through experiments on synthetic and real data, we quantitatively
evaluate the convergence of the proposed and the existing methods to
globally optimal solutions. Finally, we visualize a spatial distribution of
the global and local minima in 3D space.

Keywords: Essential matrix, Two-view geometry, Structure-from-Motion,
System of polynomial equations, Gröbner basis, Homotopy continuation

1 Introduction

Two-view geometry is a fundamental problem in computer vision for reconstruct-
ing the 3D shape of objects and camera motions using two images [17]. It has
been widely used in various applications such as V-SLAM [5,34], novel view syn-
thesis [2,33], visual localization [42,47], city-scale Structure-from-Motion [1,49],
and human interaction understanding [20]. Particularly, the most basic form
shown in Fig. 1, finding the relative motion between two calibrated cameras,
is called the essential matrix estimation. An essential matrix is a rank-deficient
3× 3 matrix of which two singular values are equal. Because of this constraint,
the essential matrix estimation has been studied for decades.

It has been well known since 1913 that an essential matrix can be obtained
from at least five point correspondences [24]1. In 1988, Demazure [10] proved that
there are at most 10 solutions in the five-point case. However, 6- [38,39], 7- [17],
and 8-point [17] algorithms had been used until a practical 5-point algorithm was
first developed by Nister [37] in 2004. The 5-point method was extended to vari-
ous problems, e.g . 3-point with known gravity direction [13,21,36], 5-point with
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Fig. 1. Relative pose estimation problem.

a small motion [44], 6- and 7-point for uncalibrated cameras [19,25,28,40]. These
methods, called minimal solvers, are usually incorporated with RANSAC [12] to
remove outliers existing in the input point matches.

On the other hand, the essential matrix estimation for the least-squares case,
where given more than five points, has been thought to be a more challenging
problem than the minimal case due to the aforementioned constraints of the
essential matrix. Many efforts have been extensively devoted to developing a
method for solving the constrained least-squares, which can be classified into
two categories: locally optimal methods [11,18,23,32] and globally optimal meth-
ods [4,7,16,48]. However, unlike the 5-point minimal case, the solution space of
the least-square case has not been well investigated in the past. There are still
open questions; How many real solutions are there? Is a solution obtained by
a local method the global optimum or a local minimum? Does a global method
surely return the global optimum?

To answer those questions, we analyze the solution space of the essential
matrix estimation in the sense of the algebraic error minimization in this paper.
We first derive the new KKT (Karush–Kuhn–Tucker) conditions as a system
of polynomial equations without Lagrange multipliers. Utilizing an algebraic
geometry software, we reveal the number of the solutions in the least-square
case. Then, we propose three direct methods for solving the new KKT conditions.
Finally, we conduct synthetic and real data evaluations to validate whether the
proposed and existing methods provide globally optimal solutions or not.

2 Theoretical Background

The essential matrix E is a 3 × 3 matrix that gives a constraint on the relative
motion and a pair of corresponding point between two images. Let R ∈ SO(3)
and t be the relative rotation matrix and the translation vector, respectively, and
{m ↔ m′} an image point correspondence in 3 × 1 homogeneous coordinates
between two calibrated cameras.The essential matrix satisfies

m′TEm = 0, (1)
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where

E = [t]×R, [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

 . (2)

Since Eq. (1) holds up to any scale of t, the essential matrix E has 5 DoF (Degrees
of Freedom). This property is equivalent to that two of its singular values are
equal, and the third is zero:

E = U diag(1, 1, 0) VT. (3)

Demazure [10] expressed the above constraint in a matrix form

2EETE− tr
(
EET

)
E = 03×3. (4)

Given more than five point pairs, the essential matrix estimation can be
formulated as a non-linear constrained problem

min
E

eTMe

s.t. ∥e∥2 = 1, 2EETE− tr
(
EET

)
E = 03×3,

(5)

where M =
∑

i(m
′
i⊗mi)(m

′
i⊗mi)

T and e is a 9-dimensional vector representation
of E. The L2 norm constraint is required to avoid the trivial solution e = 0.

The objective function of Eq. (5), eTMe, is called the algebraic error, which is
not a geometrically meaningful metric but widely used in computer vision due
to its simple form. In this paper, we focus on discussing approaches for finding
the global optimum of the algebraic error minimization.

3 Previous Work

In this section, we briefly introduce the existing methods for estimating an es-
sential matrix in the sense of least-squares.
Eight-point DLT solver [16]. Ignoring the Demazure constraint, we can re-
formulate Eq. (5) by a single constrained problem, i.e.

min
E

eTMe, s.t. ∥e∥2 = 1. (6)

Using the method of Lagrange multiplier, the solution of the above equation can
be written by a linear equation:

Me = λe, (7)

where λ is a Lagrange multiplier and also an eigenvalue of M. Since eTMe =
λeTe = λ, the optimal solution e can be obtained by an eigenvector corre-
sponding to the smallest eigenvalue λmin. The optimum of Eq. (6) may not be
an essential matrix due to the lack of the Demazure constraint. To ensure the
constraint, the singular value correction

E← U diag(1, 1, 0) VT (8)
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is typically applied as a post-processing. The above procedure is called the DLT
(Direct Linear Transform) method and has been regarded as the standard ap-
proach for decades because of its simpleness.
Local parameterization solver [18]. A straightforward way of satisfying the
Demazure constraint is to parameterize an essential matrix by 5 DoF. Two
orthogonal matrices U and V can be represented by the exponential map, i.e.

U = exp([x1]×), V = exp([x2]×), (9)

where x1 = 1√
2
[x1, x2,

x3√
2
]T and x2 = 1√

2
[x4, x5,− x3√

2
]T. Note that U and V share

a common variable x3. An essential matrix is parameterized by

E(x1,x2) = U(x1) diag(1, 1, 0) V(x2)
T. (10)

Thus, Eq. (5) can be rewritten in an unconstrained problem

min
x1,...,x5

e(x1,x2)
TM e(x1,x2). (11)

Eigenvalue minimization solver [23]. Another way to satisfy the Demazure
constraint is to find a rotation that minimizes the smallest eigenvalue λmin. Using
Eq. (2), the vector expression e can be written by

e = At, A =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 , (12)

where rk denotes the k-th row of R. Equation (5) can be reformulated by

min
R,t

tTATMAt

s.t. ∥t∥2 = 1, R ∈ SO(3).
(13)

The optimal translation t can be given in the same way as the DLT method by
the eigenvector associated with the smallest eigenvalue:

ATMAt = λmint. (14)

The 3× 3 matrix ATMA consists of unknown rotation of 3 DoF. Using the Cayley
transform, R(x) = (I− [x]×)(I+ [x]×)

−1 with x = [x1, x2, x3]
T, Eq. (13) can be

further rewritten by an unconstrained problem

min
x1,x2,x3

λmin(R(x)). (15)

SDP-relaxation solver [48]. The above two solvers are locally optimal methods
that require a good initial guess to converge to the global optimum. To avoid the
convergence to a local minimum, a globally optimal solution was proposed using
SDP (Semi-Definite Programming) relaxation. Using the orthogonality condition
RTR = I, Eq. (5) can be rewritten by

min
e,t

eTMe

s.t. EET = [t]×[t]
T
×, ∥t∥2 = 1.

(16)



Solution Space Analysis of Essential Matrix 5

The objective and constraints are quadratic with respect to E and t, therefore,
the above equation is a non-convex QCQP (Quadratically Constrained Quadratic

Program). Letting X =

[
e
t

]
[eTtT], we can write the non-convex QCQP by

min
X

tr

([
M

03×3

]
X

)
s.t. X ⪰ 0, tr(BiX) = ci, 1 ≤ i ≤ 7,

(17)

where X ⪰ 0 represents that X is positive semi-definite, and Bi and ci are coef-
ficients corresponding to the quadratic constraints of Eq. (16). The rank con-
straint rank(X) = 1 is dropped due to NP-hard in Eq. (17), which is called
SDP-relaxation. Owing to the relaxation, Eq. (17) becomes a convex optimiza-
tion that the global optimum can always be obtainable. It should be noted that E
and t recovered from X do not strictly satisfy the original constraints in Eq. (16)
because generally rank(X) > 1 even for the global optimum of Eq. (17).

4 Analysis of Solution Space

In this section, we first formulate the new KKT conditions, or the first-order
optimality conditions, without Lagrange multipliers. Our derivation is inspired
by the optimal PnP method [35]. The new KKT conditions are represented as a
system of polynomials in an essential matrix. Then, we reveal the number of the
solutions of the polynomial system by using Gröbner basis. Finally, we introduce
three direct methods for finding the solutions of the new KKT conditions.

4.1 New KKT conditions

The Lagrangian function of Eq. (5) can be written by

L =
1

2
eTMe+

µ

2

(
1− tr

(
EET

))
+ tr

(
S
(
2EETE− tr

(
EET

)
E
))
, (18)

where µ and S are a Lagrange multiplier and a 3 × 3 matrix consisting of nine
Lagrange multipliers, respectively. Note that tr

(
EET

)
= ∥e∥2 and the multiplier

1/2 is merely for convenience. The gradient of L with respect to E is given by

∂L

∂E
=mat(Me)− µE+ 2STETE+ 2ESE

+ 2EETST − tr
(
EET

)
ST − 2 tr(SE)E = 03×3,

(19)

where mat( · ) is a linear operator converting a 9-dimensional vector to a 3× 3
matrix: R9 → R3×3. Multiplying ET from left and right to Eq. (19), we obtain
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the following two equations:

ET
∂L

∂E
=ET mat(Me)− sETE+ 2ET(STET + ES)E

+ (2EETE− tr
(
EET

)
E)TST = 03×3,

(20a)

∂L

∂E
ET =mat(Me)ET − sEET + 2E(SE+ ETST)ET

+ ST(2EETE− tr
(
EET

)
E)T = 03×3,

(20b)

where s = µ+ 2 tr(SE). Using 2EETE− tr
(
EET

)
E = 0, we can rewrite Eqs. (20a)

and (20b) by

ET mat(Me) = sETE− 2ET
(
STET + ES

)
E

= ET
(
sI− 2(ES)T − 2ES

)
E,

(21a)

mat(Me)ET = sEET − 2E
(
SE+ ETST

)
ET

= E
(
sI− 2SE− 2(SE)T

)
ET.

(21b)

The right-hand side of Eqs. (21a) and (21b) is a 3× 3 symmetric matrix. Thus,
the left-hand side, ET mat(Me) and mat(Me)ET, also must be a symmetric matrix.
Defining P = ET mat(Me) and Q = mat(Me)ET, we can formulate the symmetry
constraint as the following six polynomial equations:

P12 − P21 = 0, P13 − P31 = 0, P32 − P23 = 0,

Q12 −Q21 = 0, Q13 −Q31 = 0, Q32 −Q23 = 0,
(22)

where Pij and Qij denote the (i, j) elements of P and Q, respectively. Finally,
the new KKT conditions can be given by

Pij − Pji = 0, Qij −Qji = 0, ∀i, j ∈ {1, 2, 3},
tr
(
EET

)
= 1, 2EETE− tr

(
EET

)
E = 03×3.

(23)

Equation (23) is a polynomial system in 16 equations with nine variables of E.

4.2 Solution space

We can use an algebraic geometry software Macaulay2 [15]2 to analyze the solu-
tion space of Eq. (23). Macaulay2 computes the Gröbner basis of a polynomial
system in a finite prime field, and we have found that Eq. (23) have 440 solu-
tions. Due to the L2 norm constraint, tr

(
EET

)
= 1, there is a 2-fold ambiguity

in the 440 solutions. In other words, E and −E are exactly the same solutions.
To remove the ambiguity, we can set one of E as a scalar instead of tr

(
EET

)
= 1.

For example, E13 = 1 leads to 220 solutions. Readers may refer to [26] for more
details of how to use Macaulay2 for geometric problems in computer vision.

2 http://www.math.uiuc.edu/Macaulay2/

http://www.math.uiuc.edu/Macaulay2/
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% m1, m2: 3xN set of homogeneous 2D points
% E_ini : Initial guess of essential matrix
% E_opt : Optimized essential matrix
1 function E_opt = Emat_KKTGN(m1, m2, E_ini)
2 M = [m2(1,:)’.*m1’, m2(2,:)’.*m1’, m2(3,:)’.*m1’];
3 E_opt = fsolve(@(x)KKTeqs(x,M’*M), E_ini);
4 end
5 function eqs = KKTeqs(E, M)
6 e = reshape(E’,9,1);
7 matMe = reshape(M*e, 3, 3)’;
8 P = E’*matMe;
9 Q = matMe*E’;

10 ceq1 = trace(E*E’) - 1;
11 ceq2 = 2*(E*E’)*E - E;
12 eqs = [P(1,2)-P(2,1); P(1,3)-P(3,1); P(2,3)-P(3,2);
13 Q(1,2)-Q(2,1); Q(1,3)-Q(3,1); Q(2,3)-Q(3,2);
14 ceq1; ceq2(:)];
15 end

Fig. 2. 15-line MATLAB code for solving Eq. (23) by the Gauss-Newton method.

4.3 Direct least-squares solvers

We propose three solvers to directly find an essential matrix that satisfies Eq. (23).

Gauss-Newton solver. A typical approach to finding a single solution to a
polynomial system is to apply the Gauss-Newton method with an initial guess.
The Gauss-Newton method is easy to implement and is often already built-in
as a subroutine in optimization libraries. Figure 2 shows a MATLAB example
with fsolve function written in 15-lines of code. Note that a single solution
satisfying the KKT conditions is a local minimum, which is not guaranteed to
be the global optimum.

Gröbner basis solver. As a method for finding all solutions of multivariate
polynomials, Gröbner basis method has been widely used in computer vision
for the last decade [27,29]. We applied an automatic generator [29] on Eq. (23)
with replacing tr

(
EET

)
= 1 by E13 = 1 and obtained a Gröbner basis solver that

returns 220 solutions. Unfortunately, the generated solver is not numerically
stable due to a large elimination template of size 5149 × 5369. We have found
that the solver does not return meaningful solutions that satisfy Eq. (23).

Homotopy continuation solver. Another approach for obtaining all solutions
is to use a homotopy continuation method, a classical but useful tool widely
known in numerical algebraic geometry [30]. Several software packages are pub-
licly available, such as Bertini [3]3, PHCPack [45]4, Hom4PS [6]5. We will use
Bertini for experiments in Sec. 5 because it is the fastest among the three soft-
ware for solving Eq. (23).

3 https://bertini.nd.edu/
4 https://github.com/janverschelde/PHCpack
5 http://www.hom4ps3.org/

https://bertini.nd.edu/
https://github.com/janverschelde/PHCpack
http://www.hom4ps3.org/
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5 Experiment

We report experimental results on both synthetic and real data in this section.
All experiments were conducted on a PC with Core i7-7920X.

5.1 Implementation

We have implemented the existing methods (Sec. 3) and the new direct methods
(Sec. 4.3) in MATLAB. The details are as follows:

DLT The standard eight-point DLT algorithm [17] shown in Eqs. (6) to (8).
Expm-GN Local parameterization method, Eq. (11), using the exponential

map with a Gauss-Newton optimization. Readers may refer to Sec. 4 in [18]
for the implementation details.

minEig Eigenvalue minimization method [23] implemented in OpenGV [22]6, a
C++ library for camera pose estimation problems. The Jacobian of Eq. (15)
is supplied using numerical differentiation to avoid complex arithmetic (See
Sec. 3.1 in [23]). We selected a rotation matrix from the initial E by checking
the orientation of the projective depth to be positive [9].

QCQP SDP-relaxation method for a non-convex QCQP [48] shown in Eq. (17).
We have rewritten the original C++ code7 in MATLAB using SDPA-M
7.3.9 [46], a MATLAB wrapper for an SDP solver, SDPA8.

Bertini Direct method for obtaining all real roots of Eq. (23) using Bertini
1.6 [3], a software for solving polynomial systems based on homotopy con-
tinuation. Since Pij − Pji = 0 and Qij − Qji = 0 in Eq. (23) hold up to
scale, we set E13 = 1 instead of tr

(
EET

)
= 1. Moreover, a random 3 × 3

rotation was multiplied to the point correspondences to avoid a numerical
degeneracy, E13 = 0. We selected the global optimum from all real solutions
that gives the smallest algebraic error, eTMe.

KKT-GN Gauss-Newton-based method for solving Eq. (23). A code example
is shown in Fig. 2, but we used a simple Gauss-Newton implementation with
the analytic Jacobian for efficiency instead of fsolve function.

BA Bundle adjustment minimizing reprojection error [43]. In addition to a ro-
tation matrix and a translation vector, 3D points are jointly optimized. This
is the only one method minimizing a geometrically meaningful error in this
experiment.

For quantitative evaluations, we measured three criteria: rotation error ER,
translation error Et, and the first-order optimality EKKT. The three metrics were
computed by

ER =
180◦

π
cos−1

(
tr
(
RTgtRest

)
− 1

2

)
, Et =

180◦

π
cos−1

(
tTgttest

∥tgt∥ ∥test∥

)
,

EKKT =
max(|P12 − P21|, . . . , |Q32 −Q23|)

∥M∥F ∥E∥F
,

(24)

6 http://laurentkneip.github.io/opengv
7 https://github.com/jizhaox/npt-pose
8 http://sdpa.sourceforge.net/

http://laurentkneip.github.io/opengv
https://github.com/jizhaox/npt-pose
http://sdpa.sourceforge.net/
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where ∥·∥F represents the Frobenius norm of a matrix. EKKT represents a con-
vergence to a local minimum under 5 DoF; an estimated E having a sufficiently
low EKKT is a valid local minimum that can be decomposed into R and t.

5.2 Synthetic data

We generated synthetic scenes to quantitatively compare the methods. We set the
first camera as the origin of the world coordinates, i.e. the rotation matrix as an
3×3 identity matrix and the translation as a zero vector. The second camera was
randomly positioned within [±1,±1,±2.5]. The rotation matrix of the second
camera was given by random Euler angles in the range of [10◦,±60◦,±90◦]. The
image resolution is 640×480, and both cameras have a focal length of 800 pixels
and the optical center at [320, 240]. To generate 3D points, we first uniformly
determined 2D points in the normalized image plane of the first camera and then
randomly set their depth from 5 to 10. We projected the 3D points onto the two
cameras and obtained 2D point correspondences. DLT was used as the initial
guess for the iterative methods, i.e. Expm-GN, minEig, KKT-GN, and BA.

Accuracy w.r.t. image noise We evaluated the robustness against image
noise. The number of the 2D points was fixed to 100, and zero-mean Gaussian
noise was added to the points with the standard deviation 0.5 ≤ σ ≤ 5 pixels.
Figure 3 summarizes the average estimation error of 1000 independent trials for
each noise level. Bertini gives the best performance among the algebraic error
minimization methods. This result shows that we can obtain the global optimum
by solving Eq. (23). Expm-GN and minEig are comparable each other. QCQP
gives almost the same accuracy with DLT for rotation estimation. KKT-GN
performs well for small noise levels σ ≤ 3 but becomes worse than DLT as the
noise increases whereas KKT-GN is initialized by DLT. According to the result
of EKKT, KKT-GN and QCQP get trapped by a bad local minimum specially
for high noise levels. Feature points are generally detected on subpixel accuracy,
e.g . σ ≤ 2, therefore, Expm-GN, minEig, and KKT-GN are expected to have a
similar performance in practice.

Accuracy w.r.t. number of points We compared the methods by varying
the number of the points from 10 to 100. The noise level was fixed to σ = 2.
The average error over 1000 independent trials is shown in Fig. 4. Expm-GN
and minEig have similar performance with Bertini, which provides the global
optimum close to BA, while EKKT of minEig is 10−8 that does not reach to
the machine epsilon like Expm-GN and Bertini. This observation suggests that
EKKT < 10−8 is sufficiently low to obtain a local minimum with preserving the
decomposability of an essential matrix. For ≤ 25 points, QCQP and KKT-GN
are less accurate than the other methods even though their EKKT is less than
10−8. It is inferred that KKT-GN and QCQP converge to a bad local minimum
for few point correspondences. QCQP is slightly inferior to KKT-GN in terms
of ER even for > 25 points, therefore, KKT-GN can be comparable to Expm-GN
and minEig if many points are available.
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Fig. 3. Mean estimation error w.r.t. the image noise level over 1000 independent trials
for each noise level.

Fig. 4. Mean estimation error w.r.t. the number of point correspondences over 1000
independent trials for each point.

Computational time Figure 5 shows the computational time up to 1000 points
with σ = 2. Expm-GN, minEig, and KTT-GN spend only 1 milliseconds for
1000 points, which is fast enough for real-time applications such as V-SLAM.
Moreover, Expm-GN and KTT-GN are written in MATLAB, therefore, they can
be further accelerated if implemented in C++. QCQP is much slower by orders
of magnitude than the runtime reported in [48]. In fact, we had confirmed that
the original QCQP written in C++ runs in 4 milliseconds. The main cause is that
the Windows binary of SDPA-M is not well optimized due to a cross-compilation
on Debian. This observation indicates that QCQP requires a highly-optimized
SDP library whereas Expm-GN/KKT-GN does not. However, the conclusion
still remains that QCQP suffers from high noise levels even run on C++. Bertini
requires more than 1 minute, which is difficult to use for real-time applications.

Number of real solutions We counted the number of real solutions obtained
by Bertini in two scenarios: varying the number of the points from 6 to 1000
with σ = 2, and varying the noise level up to σ = 5 with 100 points. We ran
100 independent trials for each point and noise level. As shown in Fig. 6, the
number of real solutions ranges between 25 to 40 regardless of the number of
the points and an image noise level. One point pair leads to a rank-1 update to
the coefficient matrix M up to rank(M) = 9; however, no statistical significance
was found from 6 to 1000 points. This is an interesting result that neither many
points nor low noise level does not reduce the number of real solutions.
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Fig. 5. Computational time
w.r.t. the number of point
correspondences. The result
of Bertini, > 1 minute, is not
displayed.

Fig. 6. The number of real solutions obtained by
Bertini. Circles and bars in orange show the mean
and the median values, respectively.

(a) Castle-P19:
18, rotational.

(b) Entry-P10:
9, sideways.

(c) Fountain-
P11: 10, orbital.

(d) Herz-Jesu-
P8: 7, sideways.

(e) Corridor: 10,
forward.

(f) ModelHouse:
9, orbital.

(g) 00: 454, forward. (h) 01: 110, forward. (i) 02: 466, forward.

Fig. 7. Images used in the real data evaluation. Each subcaption describes its sequence
name followed by the number of image pairs and the camera motion. (a)–(d): Strecha,
(c)–(d): VGG, (g)–(i): KITTI.

5.3 Real data

We evaluated the methods for various conditions of scenes and camera motions
in publicly available dataset: four sequences from Strecha et al .’s dense MVS
dataset [41]9, twos from VGG multi-view dataset10, threes from KITTI visual
odometry dataset [14]11. The details of the sequences are shown in Figure 7.

Quantitative evaluation We conducted quantitative evaluations as follows.
First we obtained initial point correspondences between two consecutive frames
by using SIFT [31] in OpenCV 4.512. We picked every 10th and 11th frames for
KITTI because a single sequence of KITTI consists of more than 1000 frames.

9 https://www.epfl.ch/labs/cvlab/data/
10 https://www.robots.ox.ac.uk/~vgg/data/mview/
11 http://www.cvlibs.net/datasets/kitti/eval_odometry.php
12 https://github.com/opencv/opencv/

https://www.epfl.ch/labs/cvlab/data/
https://www.robots.ox.ac.uk/~vgg/data/mview/
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
https://github.com/opencv/opencv/
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Method (a) (b) (c) (d) (e) (f) (g) (h) (i)

E
R
[d
e
g
re
e
s] DLT 0.23 0.32 0.07 0.14 0.20 0.81 0.14 0.37 0.12

QCQP 0.37 0.62 0.04 0.14 0.17 0.64 0.09 0.17 0.08
minEig 0.25 0.24 0.05 0.09 0.15 0.60 0.08 0.17 0.07
Expm-GN 0.25 0.24 0.05 0.09 0.16 0.58 0.08 0.18 0.07
KKT-GN 0.25 0.22 0.05 0.10 0.17 0.59 0.09 0.18 0.07
Bertini 0.25 0.22 0.05 0.09 0.16 0.58 0.08 0.17 0.07
BA 0.24 0.18 0.05 0.10 0.14 0.58 0.08 0.15 0.06

E
t
[d
e
g
re
e
s] DLT 1.40 1.89 0.54 0.82 3.10 3.95 2.45 2.25 1.48

QCQP 1.69 4.78 0.19 0.76 2.84 2.84 2.28 2.19 1.34
minEig 1.07 1.27 0.25 0.42 2.71 1.85 2.09 2.21 1.29
Expm-GN 1.05 1.21 0.23 0.39 2.84 1.85 2.08 2.23 1.29
KKT-GN 1.05 1.15 0.23 0.43 2.93 1.88 2.15 2.27 1.27
Bertini 1.05 1.15 0.23 0.39 2.84 1.85 2.08 2.23 1.27
BA 1.00 1.00 0.25 0.43 2.40 1.81 2.32 2.31 1.26

E
K

K
T

(l
o
g
1
0
) DLT −3.17 −3.52 −3.79 −3.51 −4.73 −2.82 −4.32 −3.47 −4.49

QCQP −8.19 −7.84 −8.14 −7.91 −8.78 −7.82 −8.56 −8.53 −8.60
minEig −8.20 −8.74 −8.74 −8.78 −9.28 −7.25 −8.46 −8.39 −9.67
Expm-GN −16.08 −16.42 −16.41 −16.29 −15.85 −15.82 −16.18 −15.91 −16.30
KKT-GN −12.24 −12.35 −12.19 −12.16 −9.33 −12.23 −9.95 −9.27 −12.34
Bertini −16.32 −16.21 −15.91 −15.70 −16.41 −16.28 −15.85 −15.59 −15.56
BA −6.23 −6.47 −6.79 −6.62 −5.10 −6.10 −5.25 −5.09 −5.33

Table 1. Estimation errors of the rotation, the translation, and the first-order optimal-
ity on real image dataset. (a)–(i) correspond to the sequences shown in Fig. 7. The best
and the second-best results for each sequence are colored in red and blue, respectively.

Then we perform LO-RANSAC [8] with the five-point method [37] as a hypothe-
sis generator and each least-squares method as a local optimizer. Since Bertini is
not efficient for RANSAC scenarios, we ran Bertini for the final refinement over
inliers obtained by the Expm-GN local optimizer. LO-RANSAC was configured
to have a threshold by 3-pixels, a confidence by 0.995, the maximum number of
iterations by 10000, and the inner loops of an LO step by five. We conducted
100 independent trials for each sequence and fixed a random seed in each trial
so that LO-RANSAC draws exactly the same samples for all methods.

Table 1 shows the average values of the three criteria, ER, Et, EKKT, for each
sequence. First of all, we can observe that three locally optimal methods, i.e.
minEig, Expm-GN, and KKT-GN, have similar performance comparable to the
globally optimal method, Bertini. Therefore, the three methods can be almost
considered as globally optimal solvers in practice. On the other hand, QCQP is
slightly worse than the three local methods in half of the sequences. Considering
the two motion errors and EKKT, we can say that the numerical accuracy of
EKKT is practically enough at 10−8 to 10−10. These results are consistent with
the synthetic data evaluation in Sec. 5.2.

Table 2 summarizes the RANSAC iterations and computational time. There
are no significant differences on the number of RANSAC iterations. Since the
same random seed was set for a single trial of all methods, this result suggests
that each method obtains almost the same inliers at an LO step. DLT is the
fastest due to its simpleness, followed by mingEig, Expm-GN, and KKT-GN.
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Method (a) (b) (c) (d) (e) (f) (g) (h) (i)

#
o
f
it
e
rs
. DLT 1049 63 30 95 11 77 52 36 53

QCQP 951 60 29 89 11 70 52 35 53
minEig 1002 60 29 88 11 70 52 35 53
Expm-GN 1002 60 29 88 11 68 52 34 53
KKT-GN 1003 60 29 88 11 68 52 34 53
BA 1001 60 29 88 11 68 52 34 53

T
im

e
[m

se
c
] DLT 880 112 40 95 9 55 45 28 50

QCQP 3067 1864 1581 1975 1229 1767 1340 1417 1379
minEig 766 96 38 83 16 63 46 39 53
Expm-GN 853 114 45 99 17 64 54 35 58
KKT-GN 858 115 45 99 21 63 56 38 60
BA 1348 510 367 441 222 373 352 299 383

# of real sols. 29 ± 7 30 ± 5 32 ± 9 33 ± 6 29 ± 6 30 ± 8 28 ± 7 33 ± 7 32 ± 5

Table 2. The number of RANSAC iterations and computational time on the sequences
(a)–(i) shown in Fig. 7. The runtime of Bertini is omitted here because it takes several
minutes for a single trial. The best and the second-best results for each sequence are
colored in red and blue, respectively. The last row denotes the average of the number
of real solutions with one standard deviation, which were obtained by Bertini.

(a) Bird’s eye view. (b) Top view.

Fig. 8. 3D visualization of real solutions obtained by Bertini. The first camera (the
world origin) is depicted in blue. The second camera (the global optimum) and the
others (local minima) are colored based on their algebraic error.

However, the difference between the three methods is slight. Expm-GN and
KKT-GN can be potentially faster than minEig if implemented in C++.

Finally, we report the number of real solutions in each sequence. We con-
structed the coefficient matrix M from the inliers detected by LO-RANSAC with
Expm-GN and solved Eq. (23) by Bertini. The last row of Table 2 indicates an
interesting result, as in Sec. 5.2, that the number of real solutions is in the range
of 20 to 40 in almost all cases irrespective of scenes and camera motions.

Qualitative evaluation We visualized the distribution of local minima, which
are real solutions computed by Bertini. Figure 6 shows a 3D scene of Fountain-
P11, which was reconstructed using the 5th and 6th frames of the sequence. We
colored the first camera (the 5th frame, the world origin) in blue and the second
cameras (the 6th frame, local minima) based on their algebraic error. The global
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optimum of the second camera is colored in white. For ease of viewing, we display
only 17 second-cameras facing the direction of the fountain.

There is a local minimum in orange near the global optimum in white. Iter-
ative methods may fall into the local minimum, not the global one, if an initial
guess is closer to the local minimum than the global optimum. Moreover, there
are many local minima having various error values behind the first camera. If
an optimization scheme starts around them, it is difficult to escape the valley of
the local minima.

As shown in the example above, we can visually validate the difficulty of a
sequence by calculating all real solutions. The solution space visualization tells
us why and how an estimation method successes or fails.

6 Discussion

As the results of the experiments in Sec. 5, we obtained the following findings.

– The global optimum of the algebraic error can be obtained by solving the new
KKT conditions, Eq. (23). Homotopy continuation methods can be used to
obtain the global optimum but are not fast enough for real-time applications.

– The number of real solutions is in the range from 20 to 40 irrespective of the
camera motion and the number of the points.

– Three local methods, Expm-GN, minEig, and KKT-GN, provide almost
globally optimal solutions, which are comparable with BA. Expm-GN gives
the lowest first-order optimality, followed by KKT-GN and minEig.

– QCQP is worse than DLT in some cases due to the drop of rank(X) = 1
constraint in Eq. (17).

7 Conclusions

In this paper, we analyzed the solution space of the essential matrix estimation
and revealed that there are at most 220 solutions in the algebraic error mini-
mization. This is the first theoretical contribution in the three decades since De-
mazure gave the number of the solutions for the five-point minimal case in 1988.
Exhaustive experiments showed that three locally optimal methods compute al-
most globally optimal solutions in effect. The proposed theory can be used to
stabilize essential matrix estimation in real applications, e.g . reliable scene graph
construction in Structure-from-Motion, motion analysis in near-degenerate sit-
uations, and so on. For future work in this research field, we pointed out the
limitations of the current direct solvers based on Gröbner basis or homotopy con-
tinuation, namely the need to improve stability and efficiency for solving large
polynomial systems such as the proposed KKT conditions. The mathematical
condition also needs to be analyzed to clarify what determines the number of real
solutions and their spatial distribution. Furthermore, our mathematical deriva-
tion contributes to explore the future development of globally optimal methods
for multi-view geometry, especially for two-view geometry with both or either
unknown focal length and unknown lens distortions.
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tive orientation problem using only 3 points and the vertical direction. Journal of
Mathematical Imaging and Vision 39(3), 259–268 (2011)

22. Kneip, L., Furgale, P.: Opengv: A unified and generalized approach to real-time
calibrated geometric vision. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). pp. 1–8. IEEE (2014)

23. Kneip, L., Lynen, S.: Direct optimization of frame-to-frame rotation. In: Proceed-
ings of the IEEE International Conference on Computer Vision. pp. 2352–2359
(2013)

24. Kruppa, E.: Zur ermittlung eines objektes aus zwei perspektiven mit innerer orien-
tierung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Kaiserlichen
Akademie der Wissenschaften pp. 1939–1948 (1913)

25. Kuang, Y., Solem, J.E., Kahl, F., Astrom, K.: Minimal solvers for relative pose
with a single unknown radial distortion. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 33–40 (2014)

26. Kukelova, Z.: Algebraic methods in computer vision. Ph.D. thesis, Czech Technical
University in Prage (2013)

27. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem
solvers. In: European Conference on Computer Vision. pp. 302–315. Springer
(2008)

28. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to minimal
problems in computer vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34(7), 1381–1393 (2011)

29. Larsson, V., Astrom, K., Oskarsson, M.: Efficient solvers for minimal problems
by syzygy-based reduction. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 820–829 (2017)

30. Leykin, A.: Numerical algebraic geometry. Journal of Software for Algebra and
Geometry 3(1), 5–10 (2011)

31. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision 60(2), 91–110 (2004)
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