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Abstract

This paper proposes a new algebraic constraint for the
planar homography estimation to ensure transformations
between two convex quadrilaterals. The new constraint is
derived by utilizing a projective invariance of an ellipse,
i.e. an ellipse is projected as an ellipse in other views un-
der a physically plausible homography. The invariance is
expressed by a quadratic inequality about a homography
matrix, therefore, the quadratic constraint can be incorpo-
rated with a direct linear method that can be solved as a
generalized eigenvalue problem. We demonstrate by experi-
ments that both LO-RANSAC and M-estimator with the pro-
posed constraint are more accurate and robust to outliers
than LO-RANSAC with the standard 4-point DLT method.

1. Introduction
The planar homography is a projective transformation

of a 3D plane onto images. Determining a homography
between two views is the basic step in various applica-
tions of computer vision: camera calibration [38], im-
age stitching [32], visual odometry [4, 39], and visual-
SLAM [31, 34]. Therefore, the planar homography has
been investigated in decades for its properties [22] and im-
provement of estimation on both accuracy and robustness.

The planar homography is expressed as a 3× 3 full rank
matrix. The traditional method for estimating a homogra-
phy matrix is the direct linear transform (DLT) method [15],
which uses at least four point correspondences obtained by
feature point detection and matching on two images. For
obtaining point correspondences, scale or affine invariant
features are widely used, such as SIFT [21], ORB [30],
Hessian-Affine [24] etc. By utilizing scale and orienta-
tion information from feature points, a homography ma-
trix can be estimated using at least two points [2]. More-
over, using five points, radial lens distortion is jointly ob-
tainable [13, 19]. Not only points, lines [9] and conics [18]
are also available for the homography matrix estimation.

Since the DLT method gives a biased solution, higher

accurate direct methods [16, 29] have been proposed by an-
alyzing algebraic error to remove the statistical bias. These
methods are based on the minimization of independent and
isotropic Gaussian noise, therefore, they assume that the
point correspondences are not contaminated by outliers.

To deal with outliers for robust estimation, the standard
approach is to use a variant of random sample consensus
(RANSAC) [5, 6, 11], which iteratively performs hypothe-
sis generation and validation by sampling four points from
contaminated point correspondences. Optimization-based
methods, which are not the mainstream though, have been
also proposed as alternative to RANSAC: ICP-based [35]
and M-estimator-based [26]. Recently, learning-based ap-
proaches [8, 27], which directly estimate a homography ma-
trix from images, have been expected to achieve both effi-
ciency and robustness.

While many methods for handling outliers have been ex-
tensively discussed, it has received less attention on theo-
ries or methods for suppressing implausible homographies
that lead to an unrealistic transformation. Hartley and Zis-
serman [15] described the projective orientation of a trans-
formed point, called the cheiral inequalities. Márquez-Neila
et al. [23] introduced a geometric constraint that four point
correspondences must satisfy if they are inliers to accel-
erate the sampling process in RANSAC. Kanazawa and
Kanatani [17] proposed a multi-step RANSAC which starts
by fitting a rigid transformation with a large tolerance, then
applies affine and homography transformations with tight-
ening the tolerance to obtain a valid homography.

This paper introduces a new algebraic constraint of the
homography matrix, which contributes to improve accuracy
and robustness in the presence of outliers. As shown in
Fig. 1, the traditional approach fails to estimate a geomet-
rically plausible homography transformation if point corre-
spondences are contaminated by slight outliers that survived
from RANSAC. Using the proposed constraint, we can pre-
vent such homographies that transform a convex quadrilat-
eral to a non-convex quadrilateral. The new constraint is
formulated as a simple quadratic inequality, therefore, it can
be incorporated to a normalizing factor of the DLT method.



(a) Point pairs and ground-truth homograpy

(b) DLT (c) Proposed

Figure 1: Homography estimation from matched point pairs
including outliers. (a) 20 correct matches in green and 2
outliers in purple. Cyan quadrilaterals are corresponding
areas from the left image to the right transformed by the
homography matrix using the inliers in green. (b) The rect-
angle turns to a crossed quadrilateral by the traditional DLT
method using all 22 points. (c) Convexity is preserved by
the proposed method with the new constraint.

2. Planar Homography
The planar homography H is a 3 × 3 matrix that relates

a projective transformation of a plane between two views.
Given a pair of corresponding 2D points x↔ x′ in the first
and the second images, the homography transformation can
be written by

x′ =
1

hT
3x

Hx −→ x′ ∝ Hx, (1)

where hT
i represents the i-th row of H and ∝ denotes equal-

ity up to scale. Note that 2D points are represented by
their homogeneous coordinates, i.e. x = [x, y, 1]T and
x′ = [x′, y′, 1]T.

A homography matrix H can be expressed as a chain of
three transformations: a similarity Hs, an affinity Ha, and a
projectivity Hp. The decomposition can be given in the form

H = HsHaHp =

[
sRU + tvT t

vT ν

]
, (2)

where s is a scaling factor, R is a 2×2 rotation matrix, t is a
2× 1 translation vector, and U is an upper triangular matrix
with det(U) = 1. For a valid and unique decomposition,
s > 0 and ν 6= 0.

Although H consists of 9 elements, the homography ac-
tually has 8 degrees of freedom due to the scale ambiguity.
Equation (1) gives two constraints for a pair of correspond-
ing points {x,x′}, therefore, we can find H by at least four
points.

Given n ≥ 4 points, the homography estimation can be
formulated by

min
H

n∑
i=1

‖x′i × Hxi‖
2

= ‖Ah‖2

s.t. ‖h‖2 = 1

(3)

where hT = [hT
1 ,h

T
2 ,h

T
3 ] and A is an n × 9 design matrix.

The optimal solution of Eq. (3) can be obtained by the DLT
method [15], which formulates Eq. (3) as Bh = λh, where
B = ATA and a Lagrange multiplier λ. The DLT method de-
termines h as the eigenvector corresponding to the smallest
eigenvalue of B.

The DLT method minimizes algebraic distance that is not
geometrically meaningful. Thus, a solution obtained by the
DLT method can be further optimized by performing an it-
erative non-linear optimization

min
H

n∑
i=1

d(x′i, Hxi)
2

s.t. ‖h‖2 = 1

(4)

where d(·, ·) denotes the Euclidean distance between two
points in the image coordinates.

We can obtain the statistically optimal solution H by us-
ing the DLT and the non-linear methods as long as the point
correspondences are not contaminated by outliers. To deal
with outliers, RANSAC [5, 6, 11] and M-estimators [26, 36]
have been used in the literature.

3. Previous Work

The standard methods mentioned in Sec. 2 do not con-
sider that a homography matrix expresses a physically
meaningful transformation. Therefore, a homography ma-
trix estimated by these methods may lead to an undesirable
transformation that cannot occur in the real world, e.g. from
a rectangle to a butterfly quadrilateral, as shown in Fig. 1b.
In this section, we will briefly review mathematical condi-
tions investigated by the previous studies for preserving the
convexity of a homography matrix.

3.1. Cheiral inequalities

It has been known in a textbook (Chapter.21.6–21.7
in [15]) that we can obtain the projective orientation of a
point (x′, y′) by validating the sign of the determinant of its
Jacobian. The Jacobian J, the partial derivatives of (x′, y′)



at (x, y), can be written by

J =

[
∂x′

∂x
∂x′

∂y
∂y′

∂x
∂y′

∂y

]

=
1

hT
3x

[
H11 −H31x

′ H12 −H32x
′

H21 −H31y
′ H22 −H32y

′

]
,

(5)

where Hij denotes the (i, j) element of H. It is called
orientation-preserving if the determinant of J is positive:

det(J) ∝(H32H21 −H31H22)x′

+ (H31H12 −H32H11)y′

+ (H11H22 −H12H21) > 0.

(6)

Considering the inverse-mapping H−1 [25], Eq.(6) results in

(H31x+H32y +H33)/ det(H) > 0. (7)

We can validate the plausibility of a homography matrix if
four corner points surrounding other points satisfy Eq. (7).
Moreover, Eq. (7) can also be used to remove orientation-
reversing points when a homography matrix is given.

The above constraint, also known as the cheiral inequal-
ities, can be incorporated into a nonlinear optimization to
enforce that a homography matrix preserves the convexity
of the transformation:

min
H

n∑
i=1

d(x′i, Hxi)
2

s.t. det(H) = 1, hT
3xj ≥ 0,∀j ∈ {1, . . . , 4}.

(8)

To the best of our knowledge, the constrained problem
Eq. (8) has not been discussed well in the literature.

3.2. Signed area constraint

The cheiral inequalities cannot be applied to validate
whether the input point correspondences can produce a
physically meaningful homography because Eq. (7) re-
quires a homography matrix. To deal with this issue,
Márquez-Neila et al. [23] proposed another constraint based
on the oriented projective geometry [20].

If given four point correspondences are all correct pairs,
the area of a triangle formed by any three of the four points
must have the same sign. This can be formulated by

sign(xT
i (xj × xk)) = sign(x′

T
i (x′j × x′k)),

∀i, j, k ∈ {1, 2, 3, 4}.
(9)

The signed area constraint Eq. (9) can be easily calcu-
lated, therefore, it is suitable for discarding outliers in each
RANSAC iteration before computing a homography matrix.
Introducing this step, RANSAC for homography estima-
tion can be accelerated by several times without any per-
formance loss [28]. In contrast to the cheiral inequalities,
the signed area constraint has a drawback that is difficult
to use for nonlinear optimization because of a non-smooth
function and the combinatorial explosion.

Convex quadrilaterals

Non-convex quadrilaterals

Convex quadrilateral

Figure 2: Concept of the proposed constraint. An ellipse
inside a convex quadrilateral is still an ellipse under a phys-
ically meaningful homography transformation. If the trans-
formation leads to a non-convex quadrilateral, the ellipse
turns to be a hyperbola.

4. New Algebraic Constraint
In this section, we will address a projective invariance of

a homography transformation between two convex quadri-
laterals. The basic idea, illustrated in Fig. 2, is that an ellipse
in the first image should be observed as an ellipse in the sec-
ond image under a homography preserving the convexity of
a quadrilateral. We aim to find a mathematical condition
that guarantees “an ellipse has to be an ellipse” before and
after a homography transformation.

4.1. Projective invariance of ellipse

An ellipse on a plane can be written by

ax2 + bxy + cy2 + dx+ ey + f = xTCx = 0, (10)

where

C =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f

 , (11)

∆ = ac− b2

4
> 0. (12)

Note that x in Eq. (10) represents a point on the ellipse C,
which is not a point correspondence for estimating a ho-
mography matrix H. Equation (12) is the necessary and
sufficient condition for a conic to be an ellipse if C is full
ranked, i.e. det(C) 6= 0. The coefficients a, . . . , f can be
expressed by using ellipse parameters:

a = r2a sin2 θ + r2b cos2 θ,

b = 2(r2b − r2a) sin θ cos θ,

c = r2a cos2 θ + r2b sin2 θ,

d = −2axc − byc,
e = −bxc − 2cyc,

f = ax2c + bxcyc + cy2c − r2ar2b ,

(13)



where semi-major axis ra, semi-minor axis rb, center coor-
dinate (xc, yc), and rotation angle θ.

Under a homography transformation x′ ∝ Hx, the ellipse
C transforms to a conic C′ in the second image:

xTCx ∝ x′
T
H−TCH−1x′

∝ x′
T
C′x′.

(14)

Thus, we obtain
C′ ∝ H−TCH−1. (15)

The transformed conic C′ has to be an ellipse if the ho-
mography matrix H represents a transformation between
two convex quadrilaterals. Let a′, b′, c′ be the elements
of C′ similarly to Eq. (11). We can formulate an ellipse con-
straint ∆′ of C′ as follows:

∆′ = a′c′ − b′2

4

=

(4cf − e2)H2
31 + (2de− 4bf)H31H32

+(2be− 4cd)H31H33 + (4af − d2)H2
32

+ (2bd− 4ae)H32H33 + (4ac− b2)H2
33

4(H11H22H33 −H11H23H32

−H12H21H33 +H12H23H31

+H13H21H32 −H13H22H31)2

=
hTSh

det(H)2
,

(16)
where

S =

[
06×6 06×3
03×6 S1

]
,

S1 =
1

4

4cf − e2 de− 2bf be− 2cd
de− 2bf 4af − d2 bd− 2ae
be− 2cd bd− 2ae 4ac− b2

 . (17)

The denominator of Eq. (16) is obviously positive for non-
degenerate homography matrices, therefore, the conic C′

can be an ellipse if and only if the numerator is greater than
zero, i.e.

hTSh > 0. (18)

The inequality Eq. (18) is the new constraint that ensures
a homography transformation to be a mapping between two
convex quadrilaterals. Comparing Eq. (18) with Eq. (2), we
can see that the constraint relates to only the projective term
[vT, ν] = [H31, H32, H33]. Thus, the new constraint can be
considered reasonable.

4.2. Ellipse to be fit

We derived the new constraint for homography transfor-
mations in the previous section. A question now arises: Ar-
bitrary ellipses can be defined on the target plane, what is
the appropriate one? To answer this question, we discuss
ellipse fitting based on computational geometry in this sec-
tion. Figure 3 illustrates three types of ellipse fitting we will
describe.

(a) Ellipse inscribed in a
bounding box.

(b) Ellipse inscribed in the mini-
mum rotated bounding rectangle.

(c) Ellipse inscribed in the minimum bounding quadrilateral.

Figure 3: Three types of an ellipse fitted on a 2D point
cloud.

𝐇

Figure 4: Degenerate case of the bounding box based ap-
proach, shown in Fig. 3a. The intersection of the two sides
of the trapezoid is inside the ellipse in the first image. A ho-
mography mapping from the trapezoid to a square transfers
the intersection to a point at infinity in the second image.
The ellipse becomes a hyperbola, therefore, the convexity
cannot be preserved using the proposed constraint.

4.2.1 Ellipse inscribed in the bounding box

One of the simplest ways is shown in Fig. 3a, where an
ellipse is inscribed in a bounding box surrounding the 2D
points. The ellipse parameters can be easily computed from
the four corner points: ra and rb correspond to the half of
the length of the sides, (xc, yc) is the center of the mass, and
θ = 0.



This idea seems to be intuitively correct; however, it is
not always true. Let us consider an example shown in Fig. 4.
Here, an inclined trapezoid in the first image gets mapped
by H to a square in the second image. In this case, the in-
tersections of the opposite side pairs of the trapezoid should
map to a point at infinity after the transformation. If one of
these intersections is inside the ellipse inscribed in a bound-
ing box, the ellipse cannot be transformed to an ellipse in
the second image. Therefore, this approach is too simple to
be appropriate.

4.2.2 Ellipse inscribed in the rotated bounding rectan-
gle

Figure 3b represents another approach to fit an ellipse,
which is inscribed in the minimum rotated bounding rect-
angle. It is expected that the degenerate case such as Fig. 4
can be avoidable. Algorithms for finding the rotated rectan-
gle have been well studied [33], and public implementations
are available, e.g. the minAreaRect function in OpenCV.
Parameters ra, rb, xc, yc can be calculated similarly to the
bounding box approach. Rotation angle θ is generally non-
zero, which is the angle between the semi-major axis and
the horizontal axis.

4.2.3 Ellipse inscribed in the minimum bounding
quadrilateral

More sophisticated approach than the previous ones is to fit
the minimum bounding quadrilateral, which is illustrated in
Fig. 3c. Generally, orthogonality of a quadrilateral is not
preserved in this case. Although the minimum bounding
quadrilateral is not often used in the computer vision com-
munity, some algorithms [7, 10] have been proposed for
solving this problem in computational geometry.

There are infinite ellipses inscribed in the minimum
bounding quadrilateral. We uniquely determine a single el-
lipse tangent to four edges of the quadrilateral as follows:

1. Assume that the center (xc, yc) is at the centroid of the
four corners of the quadrilateral.

2. Shift the four points by applying a translation T so that
their origin is at (xc, yc). Thus, d = e = 0.

3. Calculate four edge lines li of the quadrilateral.

4. Find a dual conic C∗ =

 a∗ b∗/2 0
b∗/2 c∗ 0

0 0 f∗

 such that

lTi C
∗li = 0,∀i ∈ {1, . . . , 4}.

5. Determine an ellipse by C = TTC∗−1T.

The minimum bounding quadrilateral is convex, therefore,
a conic calculated at the step 5 is always an ellipse.

5. Proposed Solution
5.1. Point normalization

Using the ellipse fitting described in Sec. 4.2, we normal-
ize 2D points so that the center of an ellipse is at the origin
(xc, yc) = (0, 0) and the semi-minor and semi-major axes
are rb/ra and ra = 1, respectively. According to Eq. (13),
the shifting leads to d = e = 0. Thus, the constrained ma-
trix S1 can be rewritten by

S1 =

 cf −bf/2 0
−bf/2 af 0

0 0 ac− b2/4

 . (19)

Lemma 1. Under the above normalization, S1 has a single
positive eigenvalue λ+ and two negative eigenvalues.
Proof. One of the three eigenvalues is obviously ac −
b2/4 > 0, which coincides with the ellipse condition,
Eq. (12). By inserting ra = 1 into Eq. (13), the positive
eigenvalue can be expressed by λ+ = ac − b2/4 = r2b .
From the top-left 2 × 2 submatrix of S1, we can obtain the
other two eigenvalues in a closed form:

f(a+ c−
√

(a− c)2 + b2)/2 = −r4b ,

f(a+ c+
√

(a− c)2 + b2)/2 = −r2b . �
(20)

In the following section, we will propose a linear solution
for finding a homography matrix using S1 in Eq. (19).

5.2. Generalized eigenvalue solver

Although the proposed constraint Eq. (18) is an inequal-
ity, we can use a quadratic constraint hTSh = 1 by in-
corporating a proper scaling to remove the scale ambiguity.
This is a similar technique used in the ellipse-specific fitting
problem [12, 14].

We can build a homography estimation problem with the
new constraint as follows:

min
H

‖Ah‖2 = hTBh

s.t. hTSh = 1
(21)

where B = ATA. Introducing a Lagrange multiplier λ, we
obtain the Karush-Kuhn-Tucker condition for the optimal
homography as a system of linear equations

Bh = λSh

−→
[
B1 B2
BT2 B3

] [
h1,2

h3

]
= λ

[
06×6 06×3
03×6 S1

] [
h1,2

h3

]
−→

{
B1h1,2 + B2h3 = 0

BT2h1,2 + B3h3 = λS1h3

(22)

where B1, B2, and B3 denote submatrices of B which are of
size 6×6, 6×3, and 3×3, respectively, and hT

1,2 = [hT
1 ,h

T
2 ].



Rewriting Eq. (22) with respect to h1,2 and h3, we obtain

h1,2 = −B−11 B2h3, (23)
Mh3 = λh3, (24)

where M = S−11 (B3 − BT2 B
−1
1 B2). According to Eq. (24),

we can obtain h3 as the eigenvector of M corresponding to
its eigenvalue λ. The 3 × 3 matrix M has three eigenvalues,
however, we can uniquely determine the optimal h3.

Generally, B is symmetric positive definite for noisy in-
puts. From Lemma 1, the sign of the eigenvalues of S are
always [+,−,−, 0, 0, 0, 0, 0, 0] and the generalized eigen-
value problem Bh = λSh has a single positive eigenvalue
that corresponds to λ+ of M. Thus, we can determine the op-
timal h3 as the eigenvector of M associated with the single
positive eigenvalue. Substituting h3 into Eq. (23), we ob-
tain h1,2. Finally, we can recover the homography matrix H

in the image coordinates by performing de-normalization.
When we have n = 4 points, the solution of Eq. (21) co-

incides with that of the conventional DLT method, Eq. (3),
because rank(B) = 8 and λ+ = 0. In this case, the gen-
eralized eigenvalue problem Bh = λSh results in Bh = 0,
where the solution is given by h = null(B). From this, we
cannot enforce the proposed constraint for n = 4 points. It
makes sense because n = 4 points correspond to the four
vertices of a quadrilateral, which is not always convex.

6. Experiment
This section reports experimental results on both syn-

thetic and real data evaluations. We refer to methods com-
pared in this section as:

DLT The standard 4-point DLT method [15].
NL Nonlinear optimization minimizing the single transfer

error, Eq. (4), by the Levenberg-Marquardt method.
NLχ Nonlinear optimization with the cheiral inequalities,

Eq. (8), by the interior-point method. Four corner
points for the inequality constraint was given by the
minimum bounding quadrilateral in Sec. 4.2.3.

Sign The signed area constraint, Eq. (9), for RANSAC.
ConvexDLT The proposed method, Eq. (21). Ellipse fit-

ting is denoted by +bbox/+minRect/+minQuad.

A MATLAB code [7]1 was used for solving the minimum
bounding quadrilateral problem required in NLχ and Con-
vexDLT+minQuad. We wrote all methods in MATLAB
and ran the experiments on a PC with Core i9-7920X.

To evaluate the accuracy of estimated homography ma-
trices by a geometrically meaningful metric, we measured
the normalized symmetric pixel transfer error (NSPT),
which is inspired by [3, 37]. The NSPT error is calculated
as follows:

1https://www.mathworks.com/matlabcentral/fileexchange/
34767-a-suite-of-minimal-bounding-objects
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Figure 5: Synthetic data generation. Left: Experimen-
tal configuration. Right: Examples of synthesized images.
Two diagonal corners connected by dashed lines are actu-
ally outliers but regarded as correct matches.

1. Sample pixels uniformly in the first image, and project
them onto the second image by Hgt and Hest.

2. Find projected pixels in the overwrapped visible area in
the second image.

3. Calculate the Euclidean distance of the projected pixels
between the first and the second images.

4. Average the distance by the number of the visible pixels.
5. Normalize the mean by 1/

√
w2

img + h2img. wimg: the
image width, himg: the image height.

6. Calculate backward errors by switching the first and the
second images together with H−1gt and H−1est .

The NSPT error has an advantage on interpretability be-
cause the error range is within [0, 1] regardless of image
resolutions. Since the perspective terms of a homography
matrix, i.e. H31 and H32, are relatively much smaller than
the other elements, the NSPT error is a better metric than
the difference of the Frobenius norm ‖Hgt − Hest‖F.

6.1. Synthetic data evaluation

We evaluated the robustness of DLT, NL, NLχ,
and ConvexDLT in the presence of unexpected outliers.
Namely, we assume that some outliers survived RANSAC
and are treated as inliers. DLT was used as the initial guess
for NL and NLχ in this experiment.

Figure 5 illustrates configurations of the simulation. The
first camera rotates around the origin with polar angle φ ∈
{30◦, 80◦} so that a square [−1, 1, 0]×[−1, 1, 0]×[−1, 1, 0]
is observed as a trapezoid. The four corner points of the
square is projected onto a 1000× 1000 image in each cam-
era. We set two different diagonal corners of the two im-
ages as inliers to simulate implausible homographies that
lead to a non-convex transformations between the two im-
ages. We added true inliers by varying the number of the

https://www.mathworks.com/matlabcentral/fileexchange/34767-a-suite-of-minimal-bounding-objects
https://www.mathworks.com/matlabcentral/fileexchange/34767-a-suite-of-minimal-bounding-objects
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(a) NSPT error, φ = 30◦.
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(b) NSPT error, φ = 80◦.
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(c) Runtime, φ = 30◦.
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(d) Runtime, φ = 80◦.

Figure 6: Quantitative results on synthetic data evaluation. All plots are semi-log graphs with respect to the y-axis.

points, 8 ≤ n ≤ 998. Thus, the inlier ratio changes from
8/10 = 80% to 998/1000 = 99.8%. True inliers were ran-
domly generated in each trial and added by Gaussian noise
of zero-mean with σ = 2 pixels. We conducted 1000 inde-
pendent trials for each n, and measured the NSPT error.

Figure 6 shows the average of the NSPT error and com-
putational time. First of all, the NSPT error evaluation in
Figs. 6a and 6b indicates a notable result that the proposed
ConvexDLT methods outperform the two nonlinear meth-
ods, NL and NLχ, for low inlier ratios and become com-
parable for high inlier ratios. The proposed methods are
more accurate than DLT by more than an order of magni-
tude for the inlier ratio less than 98%. On the other hand,
ConvexDLT+bbox for φ = 80◦ is not as robust as the other
two methods for the inlier ratio close to 1. The reason can
be considered to be the occurrence of cases where Con-
vexDLT+bbox degenerates, as shown in Fig. 4.

In the view of computational time, ConvexDLT+bbox
is fastest among all the methods. Note that the num-
ber of the points n increases as the inlier ratio becomes
higher in Figs. 6c and 6d, e.g. n = 10 at 80%, n =
1000 at 99.8%. Since the proposed generalized eigenvalue
solver divides a 9 × 9 eigenvalue problem into a two parti-
tioned matrix decomposition as described in Sec. 5.2, Con-
vexDLT+bbox is faster than DLT. ConvexDLT+minRect
and ConvexDLT+minQuad are not as efficient as Con-
vexDLT+bbox. The two methods require finding a convex
hull of the input points, of which computational complex-
ity is O(n log n). In addition to that, the complexity of the
minimum bounding quadrilateral algorithm [7] is O(N4),
where N is the number of distinct edges of a convex hull.
Due to this, ConvexDLT+minQuad is slower by an order
of magnitude than ConvexDLT+bbox. On the other hand,
the computational time of NLχ decreases as the inlier ratio
becomes high. It seems to be strange, however, we infer that
the increase in the inlier ratio improved the convergence of
NLχ. This result suggests that NLχ is not stable due to the
inequality constraints.

6.2. Real data evaluation

We evaluated the performance of the methods on a real
image dataset, HPatches2 [1], in this section. This dataset
consists of 59 sequences of a planar image where each se-
quence has 6 images captured from different viewpoints.
The ground-truth homography Hgt is provided from the first
image to other five images in each sequence. Hence, there
are (6− 1)× 59 = 295 image pairs in total.

We integrated DLT and ConvexDLT with the locally op-
timized RANSAC (LO-RANSAC) [6] and an M-estimator
using graduated non-convexity [26]. LO-RANSAC was set
to have a threshold by five pixels, a confidence by p =
0.995, and the maximum number of iterations by 2500. This
configuration assumes that the inlier ratio of an image pair is
higher than 21.45%. The inner iterations of the LO step was
five, and the size of the LO sample was chosen by the larger
of 12 or 50% of the number of tentative inliers. The signed
area constraint [23] was optionally applied for fast sample
rejection. We configured the M-estimator based on [26] but
employed Tukey’s biweight function, which showed a better
performance than the truncated L2 function in the prelimi-
nary experiments.

For each image pair, we evaluated the methods as fol-
lows. We first obtained initial keypoint matches by SIFT
implemented in OpenCV. The ground-truth inliers were de-
termined as point matches of which Euclidean distance
computed by Hgt is less than five pixels. Then, we executed
LO-RANSAC and M-estimator on the initial point matches.
We measured the following three criteria: the NSPT error,
computational time, and F1-score of predicted inliers.

Figure 7 summarizes the quantitative results over 100 in-
dependent trials for each image pair. The result of the NSPT
error indicates that the proposed ConvexDLT methods can
improve the robustness of homography estimations for both
LO-RANSAC and M-estimator. LO-RANSAC with Sign
rejects a sample that is not geometrically consistent, how-

2https://github.com/hpatches/hpatches-dataset

https://github.com/hpatches/hpatches-dataset
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Figure 7: Quantitative results on HPatches dataset. Box
plots in blue, green, and orange correspond to the result
of M-estimator, LO-RANSAC, and LO-RANSAC with the
signed area constraint, respectively. A circle stands for the
mean value for each method.

ever, there is no geometrical verification at the LO step. The
proposed methods can give more accurate homographies
than DLT if tentative inliers are contaminated by outliers
at the LO step. Among the three ConvexDLT, there is no
significant differences on estimation accuracy.

Comparing the LO-RANSACs with the M-estimators,
we can observe an interesting result that the M-estimator

with the proposed methods outperforms the LO-RANSACs
with DLT in all aspects of the three criteria. Particu-
larly, the M-estimator with ConvexDLT+bbox or Con-
vexDLT+minRect achieve the fastest computation time
with a small variance while giving the lowest NSPT error.

6.3. Discussion

Considering the trade-off between runtime and ac-
curacy, we can conclude that ConvexDLT+minRect is
the best balanced among the three approaches. Con-
vexDLT+minQuad is theoretically optimal; however, Con-
vexDLT+minRect has another advantage that many algo-
rithms are publicly available for finding the minimum ro-
tated rectangle, which have been studied for decades in
computational geometry.

7. Limitations and Future Work
One thing to note is that the proposed constraint is not

equivalent to the cheiral inequalities [15]. The proposed
constraint ensures that the four corner points of a quadrilat-
eral have the same projective orientation, i.e. sign(H31xi +
H32yi + H33) = sign(H31xj + H32yj + H33). There-
fore, the proposed methods cannot handle transformations
that preserve a convexity, such as reflections. Another thing
is that the proposed solvers are not invariant to exchanging
two images. Since the constraint matrix S1 is derived from
an ellipse in one of the two images, the forward and (the
inverse of) the backward homographies by the proposed
solvers are generally not coincident. A quick workaround
is to select a better one that gives the smaller reprojection
error; however, more sophisticated approaches need to be
investigated for a future research. It is also an interesting
topic to incorporating the new constraint with deep-learning
methods, e.g. [8, 27], to stabilize the training process.

8. Conclusion
In this paper, we revealed a new algebraic constraint on

the classical homography estimation problem to enforce a
homography matrix to be a transformation between two
convex quadrilaterals. We proposed a generalized eigen-
value solver to satisfy the new constraint and demonstrated
by experiments that the proposed method can improve esti-
mation accuracy, stability, and computational efficiency in
the presence of outliers. Moreover, we reported that an M-
estimator with the proposed method showed superior per-
formance to RANSAC in the real data experiment. M-
estimator has been considered inferior to RANSAC in the
computer vision community, while M-estimator has the ad-
vantage that it always returns an identical result for an iden-
tical input. We expect that this paper will provide an oppor-
tunity to revisit not only the homography estimation prob-
lem but also M-estimator.
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