CYBERWORKBENCH

NEC’s High Level Synthesis Solution

SEPTEMBER 01, 2016
NEC INDIA PVT LTD

Contents

INEFOTUCTION .ttt et et ettt et ettt se e et e st e st et et et et et ens et e eeeeeesaeeneeaeemsentensensens 2
C-BasSEd DESIZN FIOW ...ttt st st st st e st e ea b e st e s e s aeate st e s aeetesaeeseeenteensenneeneen 3
Basic Concept of CyberWOrkBENCh.......c..uo it et e e st e e et e et e e e e e st e e ne e ereean 3
DESIZN TOOI OVEIVIEW...oeecutiieee et e et e e et e et ee e e e stees e te s s e e staeaaseeessaesseeeseenseeassessssaesneesnseennseessseenssennnnesnsennn 3
SYNTNESIS FIOW ettt ettt e e et e s e e ste e ste e st e s e e s e et aestesssesssasseerseataestaansarssestenssenseennesrnesrnestnnns 4
VEIFICAtION FIOW..ceiiiieieiieeeii ettt e bbb s e e b s b bt eee st s e s eneenenremens 5
BENAVIOTal SYNTNESIS. ... eieie ettt st et e e st e et ee e s te s e esseeeesteesseessanss e stenseenneernesnnesraenrenns 6
Behavioral Synthesis Advantages over Conventional FIOWSccueceiieiceine e see st e e 8
Shorter Design Period and Less DESIZN COSt.....uiuiiiiiieiieeereeeieeeieecreesiteesteeestresseesrveeeseesseeessesssesssseenseenns 8
Source Code Reusability and BEhaVIioral IPScceioiiiiie ettt crvee e e sreeenaeereeeanaeene e e 9
Configurable ProCeSsSOr SYNTRESISc.vviiieeceece et e e e e e bae e e e sab e e te e sre e e naeeennas 10
Automatic Architecture EXPloration ...ttt 10
System VLSI Design Example Using C-Based Behavioral Synthesis.........ccceevveeieeieiceecccieccee e, 11
Y0 00T a0 =1V T e I 0o g ol U [o RS 12
Detailed SPeCification OF CWB.........cvciiiiicieie et et e steette ettt te e te s e e sbeestestaestaessae s e stesstessearaeernesraesres 13
BEhAVIOral SYNTNESISviiuiiiiiieie ettt ettt e s e et e s e e ste e st e es s e s s e s ae st aestesasesasaseesestaensasnsennsanes 13
Y 01U AU T] oo o (=Y S PRSP 13
OUTPUL LANBUAEES ...eveeeeieeeitteeectttee sttt ess ittt ee s et ee s sttt e s st e e e s ste e ee st e e eesssa e aesseaesssaassnssaaessseaassssenassnsensssssnnssnses 15
Target DEVICE SUPPOITEUoiiuieeieiecceeceesteesteetectte et te s te e sree s reesteeseeass e s s e s tesseestesseesseessesneessesnseensensnnns 16
0] o TU) A @e] K o =T} TR UPP 17
Behavioral Synthesis modes or Scheduling options (C to RTL conversion modes)ccceeeeevveeveecveenenns 19
Other FRATUIES....cuiiiiiiieectc et er e st et s er et e 19
VBITICATION. ¢ttt er et b et e et e b e e bbbt eb e eb e et et et et e be b e b e b eabeeneeneeneen 33
Integration With Third Party TOOISccociriiieietc ettt sttt saa e s esenasenes 37

Introduction

The design productivity gap problem is becoming more and more serious as VLSI systems
become larger. In the mid-1980s, gate-level design shifted to register transfer level (RTL) design
for designs that typically exceeded 100K gates.

Currently, several million gates circuits are commonly used just for random logic parts of a
design, which equate to more than several hundred thousand lines of RTL code. It is therefore
needed to move the design abstraction one more level in order to cope with this increasing
complexity. Behavioral synthesis is a logical way to go as it allows “less detailed design

description” and “higher reusability”.

A higher level of abstraction description requires smaller code and provides faster simulation
time. For example a one million gates circuit requires about 300K lines of RTL (Verilog or
VHDL) code, but only around 40K lines of C code. The RTL simulation of 300K lines, is on an

average takes 10 to 100 times than the 40K lines of equivalent behavioral code.

The benefits of behavioral synthesis are palpable through multiple commercial chip successes,
thus Behavior Synthesis, or High Level Synthesis, is gaining acceptance within the design
community. Various commercial chips for printers, mobile phones, set-top boxes and digital
cameras are being designed using behavioral synthesis these days. ANSI-C is the preferred
programming language for behavioral synthesis because embedded software is often described
in C and design tools like compilers, debuggers, libraries and editors are easily available and

there is a big amount of legacy code.

Presenting here an overview of C-based design flow where the efficiency and simulation
performance is compared against pure RTL with co-simulating it with embedded software. C-
based behavioral IPs are advantageous over RTL IPs and the application specific processors
can be benefited from it. The hardware architecture explorer at the behavioral level allowing a
fast and easy way to study the area, performance and power trade-offs of different designs
automatically.

This document covers how behavioral synthesis can be used for any hardware module (data

and control intensive).

C-Based Design Flow

NEC have been developing C-based behavioral synthesis called “Cyber” since the late 80’s and
developing C-based verification tools such as formal verification and simulation around Cyber
during the last 20 years All these tools are integrated into an IDE, where designers execute
these tools upon the C-source code. The name of this IDE tool suite “CyberWorkBench”(CWB).

Basic Concept of CyberWorkBench

The main idea behind CyberWorkBench is an “all-in-C” approach. This is built around two

principal ideas:

1. “All-in-C Synthesis”: means that all modules in a VLSI design, including control
intensive circuits and data dominant circuits, should be described in behavioral C
language. The system supports legacy RTL or gate net list blocks as black boxes, which
are called as C functions. At the same time it allows designers to create all new parts in
C.

2. “All-in-C Verification”: means that Verification (including debugging) tasks should be
done at the C source code. In behavioral synthesis, a designer should not have to debug
the generated RTL code. The CWB environment allows a designer to debug the original
C source code and the CWB model checker allows designer to write properties or

assertions directly on the C source code.

Design Tool Overview

CWB targets general LS| systems which normally contain several CPUs or DSPs, dedicated
hardware modules and some pre-designed or fixed RTL-or gate level IP modules, which are
directly connected or through buses.

Initially, each dedicated hardware module is described in behavioral C. Once its functionality is
verified using the C simulator and debugger, the hardware module is synthesized with the
behavioral synthesizer. Configurable processors are also synthesized from the C description in

CWB environment. Legend RTL modules are described as function, and handled as a black box.

The CPU bus and bus interface circuits are automatically generated using a CPU bus library.
After synthesizing and verifying each hardware module, the design environment allows
designers to create a cycles-accurate simulation model for the entire system including CPUs,
DSPs and custom hardware modules. With this simulation model, designers can verify both
functionality and performance of their hardware design as well as the embedded software run
on the CPU, DSP and/or generated configurable processors. The behavioral C source code can
also be debugged with the formal verification, property/assertion model checker tool. Global
properties and in-context (immediate) assertions are described for/in the C source code. The
equivalence between behavioral C and generated RTL can be verified both in dynamic and
static way.

Synthesis Flow

The CWB design flow is shown in Figure 1-1. A hardware design in extended ANSI-C (called
“‘BDL”, or “Cyber-C”), or SystemC is synthesized into synthesizable RTL with the “Cyber”
behavioral synthesizer with a set of design constraints such as clock frequencies, number and
kind of functional units and memories. Usually RTL is handles as a black box, but if necessary,
the RTL can also be fed to behavioral synthesis. The behavioral synthesizer can insert extra
registers to speed up the original RTL and generate new RTL of smaller delay. It also generates
a cycle accurate simulation models in C++ or SystemC. The behavioral synthesis can therefore

be considered as a Verilog, VHDL, C, C++, and SystemC unification step.

Behavioral
IP library

o SystemC j

Behavioral !
Synthesizer 4 Bit-accurate /
Behavioral Simulator

Low Power i
Synthesis GUI For _|Cycle-accurate HW /SW
QoR Analysis Co-simulator

Library ynthesis Contro| A
haracterize Source code debugger|

FPGA fast prototype

RT RT Power

3 & Testhench
FloerPlanner Verilog/VHDL Estimator

Generator

Fig 1-1. CyberWorkBenchT'\'I design flow

The “RTL Floor Planner” takes the RTL modules generated by the behavioral synthesizer with
estimated area. Accurate timing information is extracted from the floor planner and fed back to
the behavioral synthesizer. The behavioral synthesizer reads the timing information and re-

schedules the C code considering this.

Verification Flow

The functionality of the hardware described in C can be verified at the behavioral level, while
performance and timing are verified at the cycle-accurate level (or RTL) through simulation.
CWB has a behavioral C source code debugger linked to the cycle-accurate simulation and
FPGA emulation tool. After verifying each hardware module, the entire SoC is simulated in
order to analyze the performance and/or to find inter-modules problems such as low
performance through bus collision, or inconsistent bit orders between modules. Since such
entire chip performance simulation is extremely slow in RTL-based HW-SW co-simulation. CWB
generates cycle accurate C++ simulation models which can run up to hundred times faster than
RTL model. The HW-SW co-simulator, uses the generated cycle-accurate model for this
purpose. The simulator allows designers to simulate and debug both hardware and software at
the C source code level at the same time. If any performance problems are found, designers
can change the hardware-software partitioning or algorithm directly at the C level, and can then
repeat the entire chip simulation. This flow implies a much smaller and therefore faster re-
design cycle than in a conventional RTL methodology. This entire chip simulation can be further
accelerated using an FPGA emulation board. A “Testbench Generator” helps designers to run
an RTL simulation with test patterns for behavioral C simulation faster and easier. Its inputs are
test patterns for the C simulation and outputs a Verilog and/or VHDL testbench, which
generates stimulus for the RTL simulation. It also creates a script to run commercial simulators
to feed the behavioral test pattems and check the equivalence of outputs patterns between the

behavioral and RTL simulation.

Another important feature of CWB is the formal verification tools, which is tightly linked to the
behavioral synthesizer. With the behavioral synthesis information the formal verification tools
can handle larger circuits than usual RTL tools and have C-source level debugging capability
even though the model checker works on the generated RTL model. “C-RTL equivalence
prover” checks the functional equivalence between a behavioral (un-timed or timed) C

description and the generated RTL, using information on of the optimizations performed such as

loop unrolling, loop merge and array expansion performed by the behavioral synthesis. Without

such information, the equivalence check is almost impossible for a large circuit.

Designers can specify assertions or properties at the behavioral C level, similar to the cycle
accurate simulator. Such behavioral level properties/assertions are converted into RTL ones

automatically, and are passed to our RTL model checker.

CWB generates a power enhanced RTL model which estimates the power consumed by the
design. A set of power libraries for different technology is provided and used with the generated
RTL estimates that power for the selected technology.

A “QoR” synthesis report file of the generated circuit shows a quick overview of the design
quality. The report file includes area, number of states, critical path delay, number of wires and
routability. This information is used for quick micro-architectural exploration as well as system
architectural exploration. The system architecture explorer automatically generates different
hardware architectures based on the preferences and constraints entered by the user (area,
latency, power) at the C level. The designer can analyze the different generated architectures

and finally choose the one that meets the design constraints at the smallest cost.

Behavioral Synthesis

To support the “all-in-C” paradigm presented before, the behavioral synthesizer must cope with
three types of circuits: (i) data-dominated, (ii) control-dominated, and (iii) control-flow intensive
(CF1) ones. The three types of synthesis engines in order to support these varieties of circuit
types: (i) automatic scheduling for CFl and data-flow circuits, (ii) fixed scheduling for control-
dominated circuits, and (iii) pipeline scheduling for automatic pipelining or loop folding. Figure 1-

2 shows a block diagram of CWB’s synthesizer engines.

Control dominated circuits such as PCI I/F, DMA controller, DRAM controller, Bus Bridge, etc.,
require cycle-by-cycle behavior description, which is fit for timing chart. The extended C
language BDL can describe clock boundary in a behavioral description, and is able to express
very complex timing behavior concisely. Such description is synthesized with “fixed scheduling”
engine. For that circuits, which require fixed sequential communication protocols but all other

computations can be freely scheduled, automatic scheduling engine is used for synthesis.

BOL | [Gystemt Legend RTL |

[(extendedC) | | SpecCG | /| VeriogVHDL |
.!-__ - % "___ A AT ST
] Parser arser
[ommne) — Translator
"-.‘ i__l
p— R
[Longopt [IEEE)
! — DFG
¢ [ranstoimation = [
Automaticd |
Pipeling ‘
| Scheing | ——
=Tt ' el [Life time
! BII‘II:.hI'Ig | ! Blnd_u-.lg I nnamisl
—_— - ; T R —— =,
grerensaed 1«1\ | CotroterGen | S | | Controller Gen, | |
¥ : e .
— RIL {GFG
T RTL = Verlog/VHDL

Fig 1-2. Configuration of Cyber Behavior Synthesis

For CFI circuit synthesis, scheduling and allocation techniques play a major role. The quality of
synthesis is affected by the control flow structure. A smart scheduling algorithm must be
designed to overcome the effects of the programming style. The scheduler will have to modify
the control logic in order to obtain circuits with less latency while maintaining the data-flow

intact.

Merging two branches into a single using CDFG transformation is not as effective because the
procedure is complex and the merging does not always lead to better results. Thus, this
approach uses a systematic scheduling algorithm without CDFG transformations. In other
words, the scheduler schedules all operations in several basic blocks and several branches at
the same time in a unique way, as if they were all operations in a single basic block. The
approach handles many other types of speculations, global parallelization with a method called

“Generalized Condition Vector”, which is extended version of “Condition Vector”

{a) In-order (b) Global Parallelization

1_] +.|:l
i F1){ L T o
R1=A+B EEA T~
X=R1-C ' & =%
lelse R1=0 Y
MF2)1 37
R2=D"E; ! o * 2 cycles (man)
Y=R1+R2; : | |
} t
4 cycles (max.)

Fig 1-3. Parallelization of multiple branches for control-flow intensive applications (CFI)

Behavioral Synthesis Advantages over Conventional Flows

The next subsections describes in detail some of the advantages of behavioral synthesis over
conventional RTL methodologies like hardware-software co-design, source code re-usability,
application specific processor optimizations and automatic architecture exploration.

Shorter Design Period and Less Design Cost

Since C-based behavioral synthesis automates the functional design of hardware, it shortens
the design cycle and at the same time shortens the design time of embedded software. Figure
1-4 shows the design cycle of two designs. The first uses the traditional RTL-based design flow
and the second the proposed C-based design flow. The total design period and design men-
month for the RTL-based design is larger than the C-based one, even though the gate size for
RTL design (200K) is one third of that for the C-based (600K) one. The hardware design period
of the C-based design is 1.5 months, much shorter than the RTL-based design which takes 7
months. It needs to be stressed that the software design in the C-based design takes only 2
months while it takes 6 months for the RTL-based. This is due to the fact that the embedded
software can be debugged before the IC fabrication using the hardware-software co-simulator.
In RTL design, the software is usually verified on the evaluation board since RTL co-simulation
is too slow even for this size of circuits. Lastly, C-based design allows very quick generation of
simulation models for embedded software at a very early stage, allowing hardware and software

to be concurrently designed both in C.

I '
| & mon, " 4 peopls d man, * 1 peopls

RTL-based |

TR— J i
L desig { 2 mon. " 4 people |
Design : = m ol .~ i Zmon “dpeopis
(200G) . Layout Design | HW Evaluation
& rionitt’ | | HW design Period 115 5 Fab " 1 month |
100MM i des SW Evaltation
! 1 2muonth = § people
T ':ﬂﬁig — EMH:I * d peopie i
! Log gic Verifjcation— ~ ?"“"" '“““?
C-based | AL
Design ; 1
(600KG) n | swzuamuuin

I 3men. * Specple | pn—— | i !
8.5 month ! "« HW SW co-sim before LSI Fabricatibn
i) [i

40MM i 1 IrMH.'E-nlan'i
1 1 1

3 month &émonth Smonth 12month

Fig 1-4. Comparison of Design Periods with C-based and RTL- based Design

Source Code Reusability and Behavioral IPs

Another important aspect of CWB is the high-reusability of behavioral models, we call this as
“‘behavioral IP” or “Cyberware”. An RT level reusable module, called “RTL-IP”, can be
successfully used for circuits of fixed performance such as bus interface circuits. However,
RTL-IPs for general functional circuits such as encryption can only use for a specific
technology, since the RTL-IP’s “performance” is hard to adapt for newer technologies. On the
contrary, a behavioral IP is more flexible and more reusable than RTL-IPs, since it can change
its structure and behavior allowing the synthesis tool can generate circuits of different
performances by simply changing high level synthesis constraints such as number of functional
units and clock frequencies. Table-1-1 shows how various circuits of different “clock-frequency”
can be generated from a single behavioral IP. This IP is a BS broadcast descramblers (Multi2).
All generated circuits satisfy the required performance (more than 80Mbps) at various
frequencies. Note that the highest clock circuit (108 MHz) uses less number of gates than the
slow circuit (33MHz). This never happens in RTL-IPs, which follow the area-delay tradeoff
relation of logic synthesis. A behavioral synthesizer generates a smaller circuit of higher clock
frequency for the same performance, since less parallel operations are necessary to achieve

the same performance at higher clock frequency.

Table 1-1. BS broadcast descrambler behavioral IP comparison

Clock Frequency Generated Generated Performance
Gate size RTL size
33MHz 57KG 7.0KL 80Mbps
54MHz 42KG 5.9KL 80Mbps
108 MHz 26KG 2.5KL 80Mbps

Another important aspect is behavioral IPs are much easier to modify their “functionality” and
“‘interface” than in RTL-IPs.

The behavioral IPs sometimes generates smaller circuits than RTL IPs as behavioral synthesis
share registers and functional units for sequential algorithms, but recent RTL designers do not
usually share registers since such time multiplexed sharing makes RTL simulation and debug

very difficult.

Configurable Processor Synthesis

Since chip fabrication cost have raised considerably, SoC are becoming as flexible as possible.
For this purpose, recent SoC usually have several configurable processors besides a main
CPU. These configurable processors should be small, have a high performance and low power
consumption for a specific application. Such a configurable processor is also called Application
Specific Instruction set Processor (ASIP). ASIPs employ custom instruction-sets to accelerate
some applications. The CWB provides ASIP’s base processor and supplementary instructions
that are described fully in behavioral C, which are behavioral synthesized. This allows the base-
processors and the addition of instructions to share functional units. This sharing leads to much
smaller circuits than the conventional RTL-based ASIPs. C-based ASIPs are more flexible than

RTL-based ones in terms of public register number, pipeline stages or interrupt policy.

Automatic Architecture Exploration

CWB allows the creation of multitude hardware architecture for a unique C design. The user
can specify a set of constraints which all architectures have to meet (e.g. area, latency, power)
and a set of different architectures that meets those constraints will automatically be generated.
The area-performance-power trade- offs can be easily analyzed and the architecture that meets

the constraints with the lowest cost can be chosen by the designer.

10

Fig 1-5. Automatic Architectures Exploration

System VLSI Design Example Using C-Based Behavioral Synthesis

Fig.1-6 shows a design example of a real complex SoC used by a cell phones generated with
the behavioral synthesizer. This SoC is called MP211, which has three ARM cores, one DSP,
several dedicated hardware engines and various applications of mobile phone such as audio

and video processing, voice recognition, encryption, Java and so on.

Wide ranges of circuits including control dominated circuits and data-intensive circuits were
successfully implemented. The grey boxes (including bus) indicate modules that have been
synthesized from C descriptions with the proposed behavioral synthesizer, while the white
boxes are IP cores given in RTL format (some are legacy RTL components. All newly
developed modules are designed with our C-based design flow. This example clearly illustrates

that our C-based environment is able to design entire SoC designs, and not only algorithmic

modules.

CPUNDSF

Debugger IFF | Debugger

Timer —
Ganieal - 4 20130 }_' |5w, ; 32KH Clock

I S
T Modem
Sio }— Graphics 0
e — Canl]
12Cdevice [e | T Fiotator = 12MHz OSC
I — Contrelier
“—1 DA I UARTY = * | image Pro. '—' P

g
g
£

ower
1 WIRE Bupply [T, ete.

- F— | ARMEZEESS —
“—{ Remote | | Romore 15— Meblle |_f———fPEM S| | Volcataudi |

Sidagconiil, Mp— Souna sowes |
pedeial | ETWE BN I
I 1| eprneoz] o
= —| ARMIZBEL-S | (DSF) 1 SOMsdF i_lﬂilso
LED, etc. § BT FrreT = _! SDRAMC ODR
__fsram Sonioiee Bus | ermeo
() o]] -
FA
HORSF |- Enw ,——I— cam | [eceiz) Wv—{ 40KB
Other St J_|;| —ros | ! MCMADS L

o | =
Wirsless | nrscrac] | _ 1 i
LAN W, anc Main | sub ”E
| Digital 'I'\l'I Caigra ||Camar: LcD RTL
receiver

Figure 1-6. Behavioral design flow design example used in a cell phone SoC (Green boxes design using Cyber)

11

Summary and Conclusion

The advantages of CyberWorkBench includes faster development time, hardware-software co-
simulation and development, easier and faster verification as well as automatic system

exploration are some of these.
CWB tool is as mature as logic synthesis in the late 80’s, when designers started to use them

widely RTL level design flows. These days’ designers adopt this new design paradigm shifting

from RTL “structural” domain thinking to “behavioral” domain thinking.

12

Detailed Specification of CWB

Behavioral Synthesis

Automatic conversion of C based code to HDL (Hardware Description Language)

CPUbB Verilog ANSI-C Behaivor IP CTestBench
SEHES VHDL SystemC | | CyberWare Embedded Software
IDE with GUI =5 . e { ________ e

Behavioral Simulation !
Al ANSI-C bit-accurate sim. model
SystemC Source Code Debugger i

tion

High Level Synthesis

e

Aute Architecture Exploration

Cycle Accurate Simulation

Cycle Accurate model generator s
in SystemC or Verilog

SystemC / ANSI-C)

Source Code Debugger g

Power Estimation & Optimization

Synthesized Circuit Analyzer

et L L b LU L M

| C Level Pmprty Cecker '

Top-level description generator

RTL Style Checker I

Library Generator

- R e ey

C-RTL Dynamic Equivalence check
Testbench generator
FPGA on-chip debugger .

Dynamic Verification

Automatic Pipelining

Bit overflow checker l

Static Verification

|Veri|og, VHDL for logic synthesisJ

Figure 2-1. Block diagram of CyberWorkBench

Input supported

a. ANSI-C

b. System C/ SpecC

c. VHDL (Legacy RTL with C-based design)
d. Verilog (Legacy RTL with C-based design)

iy

Options

—Option Settings

General I Key I Editor I Menu I Dizplay |

Simulation Tool path
~ Analysis
cpp files
* Analyze as SystemC (scpars) (Analyze as BDL (bdlpars)
scfiles

i+ Analyze as SystemC (scpars) (Analyze as SpecC (SpecC2BDL)

— Syrthesis
Update infomation file of sub module if changed
~ Update always

(s Ask me every time

" MNever update

— History of Synthesis
I~ Save synthesis results(IFF files)

¥ Save synthesis environment for each synthesis

— User define synthesis option file

| e

Figure 2-2. Different ways of analysis

Type

CWB - New

Lookin: |3 C:/Users (RN A5 | fiter fiter_1/

ﬁWnrkspace |
& Project | fterbdl di
Gl Rl Project L fiker_1dir

Source file L. fiter_top. BDL.dir
Include file: 1. logic_synthesis_work
() Testbench folder _ﬂ | simulation_work

[kerbal
¥ Insettinto B fore

fiter
- @lfiter_1
include
testhench
PR
—Analyze unit
& Default

" Analyze project group
" Analyze arly 1file

Destination ks

[fiter thc
[fiker_top.BOL

P

it S|
[Fletype: | Source files (*bdl *c *cpp " sc "ot e+ o) =] Cancel
Source files ("bdl *¢ *cpp “sc ‘oo o “og)] 4
BOL files ("bdl *c)
C/C++ source files(".c *cpp “c++ *oox *cc)
SystemC files ("cpp "c++ " oot “sc)
SpecC files ["sc)
il Anyfiles ()
Figure 2-3. Input Supported as VHDL/Verilog (different file types supported)
] rtlpars = &
I /Program Files (xB6)/cyber/5.5! File
[P i Add ==
[ecinclude
dec
Remove |
[ace A I
atkwave 5
b |
Finclude I library v
Ciib I
Elosci
[Joscidbg
Fpackages
[Jsample

I Verilog file {*v, = verlog)

L Lo |

Verilog file {*v. “ venlog)

VHDL file {".vhd, "whdl)

OK

Options... |

| concer |

Figure 2-4. Input Supported as VHDL/Verilog

14

Output Languages
The output generated from CWB is VHDL/ Verilog.

RTL: I Werlog ;I Jump: I Werlog ___j

WHOL

Figure 2-5. Generated output as VHDL/Verilog

CWB - Veriloggen Option - filter(/filter/filter_1)

General |Hmm- | Fomat | =

Target © Simlation @ Logic Syrthesis Design Compiler
© Synpify/Certfy £ Leonardo Exemplar

Muitiplexer outpu format & defak C case © casex ANDOR C ke
default clause in the case statement append i necsssary € change last tem to defaut

Value to be assigned at defau dlause in the case statement @ Undefined value X co
Reset mode of FF with infial value @ Defaut © Asyncreset wih sel port © Asyne reset without set port
Output ine rumber @ Yes © Mo
Output tool options as comments 4 Yes © No
Ouiput empy lower hierarchy module & Yes © No
Fll output fle & Samefie © Anctherfile OP.x)

I Creats separts register clock pin synchronous with reverss phase:
[Add pragma about clock and reset infomation
Muitiple intemal memory of same type & Same module © Separate module

I~ Sams instance module from sach module e
NOT operation on clock for synchronous memory @ cument module " underlayer module
¥ Output memory model i is syrihesized as memery by logic syrthesis tool
I~ Output memory simulation description
I~ Expand mut-bt pott of memory irto muiple one-bit ports

T~ Speciy modle instance name infalse path scrpt for Design Compiler
I Mk bkt pin name fomat 2t design compler false path scrpt

[Bescits
Defaut | Addtional Options ~ | Load Save.

Figure 2-6(a). Different options available for selected output as Verilog

e CWB - Veriloggen Option - filter{/filter/filter_1)

Gereral | Herarchy | Fomat | 2]

Hierarchize module

Muitipler, regisier Herarchize @ Donot hierarchize
Herarchize muitiplexer

& Expand to same hierarchy

€ Hierarchize and set o lower hierarchy module

Specy hierarchy mubiplexer Morethan [& bis.and Morethan [E branches
I Ghange top module name

Tep mocule rame : |
IV Add preficfor al lower moduies

4 Use top module name os prefix

" Use the specified strings as prefix [

I Add process name as prefcor functionsl rits

T Add process rame as preffor memory

I~ Add process name a3 prefixfor decoders _|
T Add pragma for cyber to moduie defintion

Excouie

Defaut | Addtional Options v | Load Save.

owe|_ron

A

Figure 2-6(b). Different options available for selected output as Verilog

15

CWB - Veriloggen Option - filter(/filter/filter_1)
General | Hierarchy | Fomat | |
Style of register @& dock enable style € feed back stle
Suffic of register name
Dump atirbute @ Enable Disable
Dump target circuit instance & testbench INST_D " Speciy
Constarit format & Hexadecimal (™ Decimal " Octal " Binary " According to signal name
Divide(/). Remainder(*.) £ Implement with simple algorthm " Qutput with operator code
‘Signed functional unit " Use unsigned: sign converters @ Use Ssigned system task
Comparator output format @ Operatorcode © Genuine synopsis Design Wars ¢ NEC Design Wars:
addsub type select @ share
Pipeline functionsl unitis) @ Defaut i iy for Unsupported:
FSM state number @ Parameter variable {without bit width)
" Parameter variable (with bit width) " Gonstant value
Assignment code with combinational circut aiways block &' a=b Cab
Assignment code witin LATCH cieut abwaysblock (a=b @ ach L
Insert absolute delay to register substitution @ OFF C oN
e i [—
B —
‘define identifier [—
‘define fie name | Browse
Generate 'define file & OFF ~ON
Insert d iC & OFF € ON
Decoder output format: @ Index format ™ forloop format " caseformat ﬂ
{Exeode Y
Default Additional Options » Load Save.

Figure 2-6(c). Different options available for selected output as Verilog

Target Device Supported

Full ASIC/ FPGA support

Support all FPGA families from Xilinx and Altera

The Generated RTL is optimized for the specified technology.

cnr Praject Option - filter_1
Main | Anclysis | Emor Display |
—1.Basic Settings
Clock period i 1000 | 1/100ns vI = 10ns (Frequency: 100 MHz)
Clock uncertainty 20000 (1/100ns) = 2Zns
€ Absolute value of delay | (171000 @ Percentage of the clock period |
Effective clock period 80000 (1/10ns) = 8ns
— Library
+ Create New Library i Select Bdsting Library
2 Device
* FPGA i ASIC
family name cycloneV/ _V_i
device name virtex el
g wvirtex2
package name vitexp
speed grade virtexd
wirtexes
Logic syrthesis tool | Vit=x5 ¥ Folowthe logic syrthesis tas! in basic
virtexBower-power
—3.Basic Library — virte
g 2
Setting.. I o T
|SICYBER_PATH)/packages fpga_cv BLIB
Delete
—4 Standard Functional Unit Library
e |
S{CYBER_PATH}/packages/fpga_cv.FLIB
Delete
‘ |

Default !

Figure 2-7. Different options for selecting families of Xilinx and Altera

16

Input Constraints

Ability to specify the clock frequency

Ability to specify reset signal and its type.

Ability to control resource allocation: CWB allow user to specify any resource constraints that is
desired during implementation of the specific module.

oy Function unit library - C:/Users/deepak.pathania/ANSI-C/filter/filter_1/filter.bdl.dir/filter/filter-amacro-auto.FLIB =i
Library type: [GENERATED Librery riame [fiter il
[ibraty il for arthmetic operators | Unt [1710 =] [ps =
Library file for basic eperators
Library file for amhmetic operator
[FPGA Setlings
| Family [cycloneV Device [Package [Speed |
Fucionunt Add | Dokt | cow |
Operator name | Kind [sign | Bt wid | Detay | Delaylinpit-Req Delay(Reg Outy] Area(Combinati] Area(REG) | MACRO_BLOC] DSP implemert] NETLIST | NET
1 I -] | [[I [I | | i

o]
Kind ¢~ Function operstor name [
 Arithmetic operator name |

& Apsolute delay | Unt 1/10ps
© Speciy cycle Cycle (A small number are possible)
Delay " Speciypioeline. Delay Stage count
Delay(nput-Reg)
Delay(RegOutput)

Specy chain effect Add Delet=
[Cran oigin [Chain destinetion [Specy chain destination defay
T e |
Figure 2-8. Function unit libraries for input constraints
o CWE - baltran Option - filter(/filter/filter_1)
I Show advanced options
basic setting Y
Mode oo oo
Clock/Resel Profty for execuion fime
Specify clock_constrairt A
Library i i .] . .
FU Libraries NO 1 2 3 4 5
Memory Libraries Optimize Not optirize
e
mfm” “Tﬁ”“'s L timg Short synihess time.
esize planning —
[Other option have priorty over Macro |
Eor Priotity for circuit area
detail setiing i
Crouit specfication ; / ; ; ; ;
- Language-evel optimization NO 1 2 3 4 5
Cther aptimizations Large area Sl area
‘:i“::“‘i”g Fast exscution * > Slow execution
g /Eﬂ:ﬂ:v?w [ther option have priorty over Macro |
Register Proty for cycle Priorty fordeloy
FSM i .
Loop/Function ¢ 7 ; T 7 5 ;
- Fipeine NO 1 2 3 M 1 2 3
ftool output Short cycle Long cycle Large delay Small delay
—
g;“m‘f“’“““""z Large area <> Smal area Smal area Large area
put fe = -
W [Other option have prorty over Macro =] [ther option have prierty over Macro |
- Gther Options R4l
MAT <1000 < -Zresource_for=GENERATE Zresource_mert<GENERATE -Zntemal _valid_sig_gen -Zdup_reset=YES -EE 4 S{CYBER_PATH) /packages/fpga_cv BLIE 1 e
SICYBER_PATH)/packages/foga_cv FLIB
Stop
Defaut | Addtional Options » | Lozd.. Save.

Concel | douy

A

Figure 2-9. Different options for synthesize planning to control resource allocation.

17

Figure 2-10. Different options for function constraint to control resource allocation.

= Function Constraint - C:/Users/ NN /ANSI-C/filter/filter 1/filter.bdl.dirfilter/filter-amacro-autoFCNT — O

Conatrairt file for anthmetic operators [l Constraint name [fiter Delayunt [1710 =] [ps =
~ | Copy
Operator name | Max. FU count ';‘;’;gm;ml Aizs Kind |5gn | Bit width |De{ay |1D;‘:;F(eg] |E;:;YOUIDM

<l

Maarun FUcou < | - |

For folding loop

Specfy chain effect Add Delete

Chain ofigin [chain destinstion

[Gpestorname

Specily chain destination delay

|

Cancdl |

ooty |

o Project Option - filter_1
2
Main | Analysis | Emror Display |
1.Basic Settings
Clock period | 1000 [1/100ns x| = 10ns (Frequency: T00MHz)
Clock uncertainty 20000 (1/00ms) = 2ns
" Absolute value of delay | { 1/100ns) ¢ Percertage of the clock pered |_
Hfective clock period 80000 (14100ns) = Ens
Figure 2-11. Options for specifying clock frequency
e CWB - bdltran Option - filter{/filter/filter_1)
I~ Show advanced oplions
basic setling =]
e Clock/Reset port
Clock/Reset Clock Name [CLOCK
Specfy clock _constraint
ubm;ew ae_san & Risngedge (~ Fallng edge
FU Libraries When not specified & Do not create when not required Create ahways
Memory Libraries
Bt Lbrakes I~ Generate clock signal dedicated for inversed-edge tnggered registers
et g Qlock signal name (¥ Clocicname +*_REV! ¢ Specify
Macro
Eror
detai setiing Reset Name [RESET
Crouit specification =
Language-evel optimization e b £ sy e
Other optimizations Synchronous (+ Asynchronous
Scheduing
FU sharing I~ Deasset resst synchronously
Aray/Memory - " , 5
Arkion The niimber of regieters inserted at reset input [2
FSM [V Make a duplicate of resst signal in each clock domain
Loop/Function
Fipeine When ot specifisd (& Do not creats when not required (~ Creats always
tool output
Croult specification? - Initial values at vanable declaration
Output file & Assign at the reset state ¢ Assign at the first state |
Information
rRese‘ state creation] Ll
<1000 & Zresource_font=GENERATE -Zresource_ment=GENERATE -Zintemal _valid_sig_gen Zdup_reset=YES -EE b SICYBER_PATH)/packages/foga_ov BLIE i Ercate
S{CYBER_PATH)/packagessfpga_cv FLIE
Stop

Default

Addiional Options «

Load... Save..

Figure 2-12. Settings for frequency reset

18

Behavioral Synthesis modes or Scheduling options (C to RTL conversion modes)

» Automatic scheduling
* Manual Scheduling

» Mixed Scheduling (user specific)

e CWB - bditran Option - filter{/filter/filter_1)

basic setting -

b Mode Syrthesys Made]
Clock/Reset © Manual scheduling
i Speciy clock_constraint @ Automatic scheduiing
UP'BFHL o ™ Automatic pipeline Scheduling
raries - -~
e e {Data Intiation Interval = [1 oycle)
i Other Libreries
syrthesize planning Functional unit constraints generate/use mode
i Macro % Generate functional unit constraints automatically
Eror " Use only funclional units listed in FCNT file
detail setting

Circuit specffication 1 Memory constraints generate/use made
i+ Language Jevel optimization
i Other optimizations
i Scheduing
i FU sharing
= ArrayMemory lower hierarchical modules

@ Generate memory consiraints automatically
" Use arly memory listed in MCNT file

i~ Register default valus for input signals of lower hierarchical modules @ DontCare 0
i~ FSM

i Loop/Function

b Pipeline

ool output

i Circu specfication2

- Outpt fils
F Information
|
1000 -5 -Zre: _fort=GENERATE -Zre: »_ment=GENERATE -Zint |_valid_si -Zdup_reset=YES -EE 4b ${CYBER_PATH}/packages/fpga_cv.BLIB 4
(5100 Zoaocn et GENERATE s 1 amal_vail_sig_gen -Zdup_res \ P——— i
Default Additional Options + Load... Save...
OK Cancel
Figure 2-13. Behavioral synthesis mode (Scheduling options)
Other Features

Hardware architecture or design level optimizations at each source code level as well as at
module level and both by user specifications and automatically by tool such as:

Loop merging, optimization, unrolling, pipelining, false loop detection and loop parallelization.
Automatic bit-width optimization, Automatic priority logic generation for shared memories and
registers, Speculations and suggestions for optimizations, Operator level optimizations, Array
Overflow checks etc., Register sharing and exclusivity, Reset State Behavior defining,
Interfaces, variables, arrays initializations, Selecting memory and register types (ports of
memories and registers clock style or feedback style). Selecting memories as synchronous/
asynchronous and port access mechanisms.

Ability to define various types of interfaces for behavioral designs such as pipelined, buffered,
serial or parallel. Ability to define scheduling of behavioral operations to be done in each cycle
at source code level. Micro-architectural Design Exploration: Ability to generate multiple RTL
designs from one behavior code under given or changing physical constraints. Generate Trade-

off chart between area/resource, latency and timing and provide choices to user for best design

19

as per the requirement. Automatic top module generator to integrate different modules of (c-
designed module or existing RTL designs modules) and able to define top module in C as per
the user requirement. On-chip Bus Interface Generator to automatically generate bus interfaces
for AMBA AHB, AXI, APB and bridges. On-chip Bus Generator to automatically generate on-
chip buses (AMBA based). Ability to handle clocks domain crossing (Supports asynchronous
and synchronous interface generation between two modules at different clocks) while
generating top module and integration of modules. Ability to support Clock Gating. Detailed QoR
report generation for the design, having information about area, latency and resources utilized.
Data path or RTL schematic Viewer capability. Dataflow diagram viewer and Signal table to
show operations occurring in each state of FSM generated.
Synthesis options for generating kind of FSM encoding required. Synthesis options for kind of
logic to be generated for constant array, variables and globals Ability to maintain history of
changes made in the C code and behavioral synthesis in case user wishes to compare or move
to previous design or next design. RTL generation options: RTL code generation as per the
target (Logic or FPGA Synthesis, DC Compiler, Simulation etc.)

cur Verification ltem ﬂ

—Verfication Unit Name

Auto-generated Property]Constmirrts]Options]‘u’ersion] Info. Cutputs]

Bug Detection l Desired State Check]

Meaning J B Check all
" Mo amay bound violations

Mutually exclusive conditions for NMLX
O MULTI ASSIGN VIOLATION No muttiple assignmert in same FSM state

4

Uncheck all

4] | il

Cancel Verfcation results I Verify ‘ Set

Figure 2-14. Array overflow check

20

— Bitwidth Optimization
Oiptimization level options
{* Optimize bitwidth of all variables

Optimize bitwidth of logic type {char, short, int, long, or long long) varables
and intemally generated varables

{™ Optimize only bitwidth of intemally generated variables
™ Mo bitwidth optimization peformed, including intemally generated variables

i+ Default
" Optimize bitwidth of amay bound to memaony
" Do not optimize bitwidth of amay bound to memarny

—Shared amay

Figure 2-15. Automatic bit width optimization

¥ Create read enable for multiplexor(s) for address port of memany without read enable and chip select
[~ Create read enable for multiplexor(z) for address port of shared register amay(LUTRAM style)

Figure 2-16. Automatic priority logic generation

o CWE - bditran Option - filter(/fifter/filter_1)
I~ Show advanced options
basic setting |v Duplicate each ter variable for every state and condttion ;I
Bl W Merge redundant logic aperations
(ke et Faiten mlidevel multiplexer in
- Specty clock_constraint [datapath [FSM
Library
i il Buid In Sef Test
Memory Libraries
-« Other Libraries [~ Create LOGIC BIST circutt
synthesize planning Input port name for multiplexer cortrol signal| TEST
Macro
- Error Port
detal setting ™ Generate reqisters at input ports
- Circut specication | s e
Languagedevel optimization Ui by
[—— I~ Generate registers at output ports.
~ Scheduling register stage number| 0
FU sharing
- Aray/Memory ~Clock Domain Cn g
?Seaster I~ Generate muttiflipflop synchronizer at input ports.
S — Wumber of registers for syrchronizer at ssch port [0 ol
- Pipeline I~ Generate mux synchronizer.
ool output
Circuit specification2 ~Others
- Output file [~ Optimization in identical conditional branches |
Information
1000 s -Zresource_fert=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE b ${CYBER_PATH}/packages/fpga_cv.BLIB 4l ${CYBER_PATH}/packages/fpga_cv.FLIB +il Execute
fitter-auto_FLIB +fl fiter-smacro-auto FLIB 4fc fiter-auta FCNT +fe fiter-amacro-suto FCNT 4mi fiter-auto. MLIB 4mc filter-suto MCNT
Stop

Default Additional Options = Load... Save..

Figure 2-17. Clock domain crossing

21

o CWB - bltran Option - filter(/filter/filter_1)

[~ Show advanced options

basic setti L -
?S'CMZ de'"g 5 o optons Hemnati to wariabis =l
jock/Reset WMaximum length of register nams | 32
Specify clock_constraint ™ Include function name in variable name:
@& All vanable names and function names
; C fist characters of variable name and all characters of function names
Memory Libraries)
i e i € fist characters of variable name and first
synthesize planning characters of function names
Macro
Eror ~gated dock
d?ﬁ[“;ﬂ“m"g oy [V Synthesize register with gated clock
reutt specication
i il T Synthesize register whose bitwidth is or more than with gated clock
Other optimizations B
Scheduling ~Register op
FU sharing [The register orly in initialization with substitution is optimized
1 ™ Do not optimize register feedback loop to retain register value.
Detaied register settings
{ Default valus for write data port of shared register fot including amays) & DontCars € 0
Information
<1000 = -Zresource font=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -Zgated_clock -EE 4b S{CYBER_PATH}/packages/fpgs_cv BLIB 4l S{CYBER_PATH}/packages fpga_cv.FLIB Eaite
#l fiter-aLto. FLIB +fi fitsr-amacro-atto FLIB 4 fiter-auto FCNT = fiter-amacro-auto FCNT Aml fiter-auto. MLIB 4me fiter-auto MCNT
Stop

Defaut | Addtional Options = | Load Save...
oK] Carcel | ooy |
Figure 2-18. Clock gating

B * gthiers, In any form, without the prcr written _‘_1 | 010203 04050607080910111

5 = permission of NEC Corporation. Use of copyright
10 ® notice does not evidence publication of the program 7
1 1 o) L l
12 -
13 Hinchude "fitter.c™ N
14

£ in ten7..0yindata; /~ Input Port for Original Image */]

out reg(7..0) otdata; /* COutput Port for Fitered Image =/ [] Bl
17 4
18 procass fiter() {
19 ™ Local Vanables */
unsigned char out_image[VLEN][HLEN]~ Cyber amay = RAM 7,

e intx, ¥
23
24 / Original Image Input =/
25
26 ~ Cyber unroll_times =0 =/

7 for fy = 0;y < VLEN: y++} {
28 /* Cyber unroll_times =07/

25 for o= 0; < HLEN; x++) {

in_imagefy]ix] = indata;

3
32 i
33
4 /* Fitter Process
35 fiter_main{in_image. out_image);
36
v /* Original Image Output =/
38
35 ~ Cyber unroll_times =0 °/

4 forfy = 0;y < VLEN; y=+} { b
41 /* Cyberfolding =17/

for fc = 0;x < HLEN; x+4) { |:| |:|
otdata = out_imagefy]fx]; LI

Figure 2-19. Dataflow viewer

Quality of Resut @ | Qualty of Resut(2016/08/12 11 454ma[|

Port [Fe Mem [Others |
7

FL1
C/bdl
o1 0z 03 04 05 06 a7 08 1] 10 1 12 Sroael5eaa7] FSM 14

101

|»

in ter{7.) indata:

out reg(7..0) otdata;

out reg(7..0) otdata;
intx, v, lox, ey
intx,y;

intx,y, ke ky;
intx.y.

[£-in_image(MEMBEWE2208) unsigned char in_image[VLEN][HLEN]

[=-out_image{MEMBEWE2208) unsigned char out_image[VLENJ[HLED

MEMBEWE2208.RA1

-~ MEMBBWE2208 RCLK1

-~ MEMBaWE2208.RD1

-~ MEMBBWE2208.WA2

MEMB8WE2208 WCLK2

-~ MEMBaWE2208 WD2

- MEMBEWE2208.WE2

Function Unit

F-add12s_11@&1

-add12u_11@1

-addBs@1

Po_aanioa

< |

Figure 2-20. Dataflow viewer signal table

Timed C Coding (Specify clock for C language coding)

Manual Scheduling
(Timed)

Automatic scheduling

(Untimed)
Cycle 1
$ semwwswwswsww| Cycle boundary
Cycle 2
$ ------------ Cycle boundary

Cycle 3

y

W
Execution
Timing

Figure 2-21. Different scheduling behavioral operations to be done each cycle

Cyber Synthesis Report
Summary

| filter CWBSTDELIB

FPGA Family FPGA Device FPGA Package FPGA Speed ‘

114213ns

Resource Utilization

Blnr_k Mm ory

DSPs

Functional Unit
addi2s 11 signed | (12911 [oss| 1
add1Zu_11 + unsigned | (119)11 13 0 0.99 1
add8s + signed | (861)8 9 0 086 1
:
Figure 2-22. Detailed QOR report
s CWB - bdltran Option - filter{/filter/filter_1}
[~ Show advanced options
basic setting &
- Mode —FSW stats sncoding B
L Clock/Reset mutiple FSM
b Specify clock _constraint * Default
Li.bcary " Generate FSM with state transition
i FU Libraries " Single FSM € FSM patitioning State/FSM " Onehot
- Memory Libraries
L Offiir Libesics, Large <— Control delay —> Small
syrthesize planning Small <— Circuit ares —> Large
b Macro State encoding
o Emor @ Binary ¢ Gy cods
detail setting
i Gircutt speciication1 FSM
- Language-evel optimization
{-Oofis epeimtions ¥ Transt from ilegal states to the reset state

i Scheduling
i FU sharing

Loop/Function

L Pipeline
itool output
b Circuit speciication2

Output file
L Information

<1000 5 -Zresource_fert=GENERATE -Zresource_mert=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE 4b ${CYBER_PATH}/packagesfpga_cv BLIB 4l ${CYBER_PATH}/packages/fpga_cv.FLIB <l
fiter-auto FLIB +fl fiter-amacro-auto FLIB fc filter-auta FCNT +fc fiter-amacro-auta FCNT Hml fiterauto MLIB dmc fiter-auto MCNT

Defaut | Additional Options = | Load Save.

Figure 2-23. FMS encoding

24

Herarchy hstory | iter |

Process name | Instancecount | AREAtotal [State count [FU [REG | MUX | DEC | MISC | Memor] Pin_pe] Net | Leiend] Crical | Block M DSP_|
fiter 1 438(100.0%) i 40 189 264 14 80 2144 617 746929 14213 995328 O
sum 38 140 189 264 14 a0 2144 617 746929 14213

Figure 2-24. History of synthesis

Register amay mappedto ¢ Default style LUTRAM style (Decoder style
Figure 2-25(a). Kind of logic for constant array variables global
. N |
/" 323 Fitered Coefficients */
const char coeff[KSIZENKSIZE]” Cyber amay = LOGIC =/ =1
Figure 2-25(b). Kind of logic for constant array variables global
L CWB - bditran Option - filter{/filter/filter_1)
I~ Show advanced options
"a_s'cMzz's"g - Intial values at variable declaration B
(Clock/ | (¥ Assign atthe reset state (~ Assign 2t the first state. ‘
Specfy clock_constraint
Library - Reset
-+ FU Libraries Decided automatizaly (" Create & Do not creste ‘
Memary Libreries
Other Libraries Readt farregater
m:::;i] [Da not reset registers withoutinitial value
Eiee [~ Reset registers connected to output signal
detail setting ™ Reset registers connected to valid_sig signals
= Circut specification [~ Intialize shared registers in curent process.
Language-evel optimization
Ot cpliizaons Iniislize urintislized gobal signalis)
] iﬁ';d”“"g ¥ nilislize urinitisized global signalfs)
e /E’;”g (eteiert o olirad s Ae) el ol et ey
e ﬂ:m“'y ¥ Intisize urintialized output signalls).
FSM [Initialize urintialized global register amayls).
+ Loop/Function
Pipsine Clock/Reset for shared regi
tool output % Set the same clock/reset sionl of shared registers 28 that of lower module which does wite operation
- Girouit specification2 ¢ Set currert module of clockreset signal as input of shared registers
Output fle
nfomtion

—Clock/Resst for shared
% Setthe same clock/reset signal of shared memories as that of lower module which does wiite operation
' Set curert module of clock/reset signal as input of shared memorics

~Reset to submodul

L

[~ Specify reset signial to be connected to module with only one reset port

1000 s -Zresource_fert=GENERATE -Zresource_ment=GENERATE -Zntemal_valid_sig_gen -Zdup_reset="YES -EE 4b S{CYBER_PATH]/packages/foga_cv.BLIB 4l ${CYBER_PATH}/packages/fpga_cv.FLIB -l
fiter-auto FLIB +f fiter-amacro-auto FLIB Hc fiter-auto FCNT +fc fiteramacro-auto FCNT 4ml fiter-auto MLIB 4me fiterauto MCNT

Execute
Stop

Default Additienal Options v Load... Save.

ok | ceed | |

A

Figure 2-26. Different options for Interface variables arrays initializations

25

P CWB - bditran Option - filter{/filter/filter_1)
[Show advanced.opiors

basic sefting B

Mode ~Loop unrcling

= Clock/Reset (" Do net unroll all for*loops

Specty clock_consimint

" 157 Speciy thecandiion o i
= FU Libraries (& Unroll Yor loop(s) i the number of statements after unrolling is less than or equalte |512

Memory Libraries

ol Amieny (~ Unrol Tor loop(s) the number of reraton is less than or equalto .
synthesize planning ¢ Unrol ll for'loops

Macro

Eror -
= Loop optimization

Circutt specfication1 [Loop invariants optimization

Language-evel optimization maximum nested loop number ("A" for no limit) 1

i [V Loop merge on automatic scheduling
Scheduiing | 12
FU sharing N
Fundtion —
- Aay/Memory unetion
Register Converting functions " Function call " Default " infine
i Moy G Cyelescourt o8 Fewe

Plsine Small <— Croutarea —> Large

tool output [~ Initiglize unintialized local vanables with 0
e
Ottput fle
Information
<1000 = -Zresource_fent=GENERATE -Zresource_mert=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE 4b ${CYBER_PATH}/packages fpga_cv.BLIE Execute

SICYBER PATH)packages/fpga_ev.FLIB _.__J

Default Addttional Options + Load Save

Figure 2-27(a). Options for Loop merging, optimization, unrolling, parallelization

—For binding algarithm 2 —
i+ Default
" Areadiven ([~ Avoidfalse loop)

" Timing driven (Avoid false loop)
" Minimize area by FLI sharing

i+ Reduce multiplexer by suppressing FU sharing
Figure 2-27(b). Options for Loop merging, optimization, unrolling, parallelization
Micro-architectural Design Exploration: Ability to generate multiple RTL designs from one

behavior code under given or changing physical constraints. Generate Trade-off chart between

area/resource, latency and timing and provide choices to user for best design as per the

n Y-axis value Sorting criteria of
the displayed
| designs
[Faaet)| peces |
[Wamen] dchae Display all designs, = 2
= only manusl designs (e e
or only automatically |8 Lieruss D
L | generated anes ’— e |
B O® Comtmaicn o
If no memory size info is £l
given in MLIB file, point
shaged means no area
info T‘“
: i
e oo nogbsd o dtus 0eaGet o ndn e ol :u::c:\c’iJ
I 2
7 Ciscalpeh ey
sign scatter plot (2ach
point corresponds 1o 1
design)
~ H-Axis value
P T (Designs, Maxmin!
Ui avg. performance,
siate count, critical
T path latency ete.
g
E| | -
=y AV
[ke @ dbwchte (Do w)

Figure 2-28(a). Micro-architectural design exploration

26

Code:
unsigned var(63..0) add{,
sum = fifo[0]; % —

for(i=1;i<8;i++){
sum = gen_sum(Lfifo[x]};
¥

Synthesis Options

= Local Attributes

i

| -

Functional Unit
Type and Number

0 /* Cyber function = inline */
unsigned var(63..0) add{
sum = fifa[0];

/= Cyber unroll_times = all =f
for(i=1; i<8 ;i++H
sum = gen_sum(l, fifo[x

N /

Figure 2-28(b). Micro-architectural design exploration

Ex:IDCT

65 -
RTL
60 Al =32, ST =41 /)
ri/ // clock: 50 MHz
55 thru-put: CIF, 30fps

~ >

&l

D,

45
40 ALul=1_ST=714 clock: 60 MHz
[7 Fl—
4 ALuTE: S17H0 M2 [storz —~u thru-put: CIF, 30fps
-
30 \‘ﬁﬁ
400 600 800 1000 1200

Cycle
clock: 60 MHz

thru-put: CIF, 15fps

Figure 2-28(c). Micro-architectural design exploration

. "
|- L. CWB - On-chip bus automatic generator - filter_1(/filter) |

o Bdef file editor : bus_def.bdef ?
1 B | Browse...| New..| Edt 1

NewBus

AHE &= B" i "S{CYBER_PATH}/packages fpga_cv FLIE" 'bus_def .

AHB boki-Layer L
o I |22
8
~]| ave2spe
AXi2AHB
a0 : o |
ok | cacd | oy |

4

Figure 2-29. On chip bus generator

27

L CWB - Bus interface circuit generator - filter_1{/filter)
—Cybus options
Inout fie [Browse...| New..| i
Inttial value macro file | Browse i Nll Ed_.‘.l
Address macro file | Bmwse...l E_w__l Ed_rl_]
Cutput format (* Separate process format " Include format
Mode format & Default " APB slave " AHB slave
[Create register to input address pin
Emor output (+ Standard outplt " File
|
Specify output file prefix |
Polarity of reset pin (+ Active High " Active Low
Declare resst pin & Declare " Do not declare
Declare clock pin (* Declare Do not declars
Port for debugging " Create * Do not create

Generate I

Cancel

Figure 2-30. On chip bus interface generator

RN

.. CWB - bdltran Option - filter(/filter/filter_1)
[~ Show advanced options
basic settin i -
i Mode - — Implement operations _I
Clock /Reset * Determine functional unit implementation automaticaly
- Specty clock_constraint " Use customized IP (Synopsys DesianWare, Xiinx CORE generator, Atera Megafuncions)
megj L i~ Implement operations as single cycle functional units
ranies
Moy Ui ™ Use combinational functional urit
b~ Other Libraries
syrithesize planning —Implement mutti-cycle operations, mukticycle memary
B Input for multi-cycle operations
(* Input from same register
detail setting))
Gl <peBeaon] " Input from muttiplexers with latches
Language-evel oplimization " Input from multiplexers with inverse phase clock registers
gﬁ;:duTt\mlzamns Input for mutti-cycle memony
i~ Scheduling i
" FU) sharng & Input from same register
- Amay/Memorny ™ Inptit from muttiplexers with latches
Register
= " Input from muttiplexers with inverse phase clock registers
Loop/Function Multiplexer selection signal ~ + Whenslow (™ When fast
Pipeline
tool output —Cycle count in condtional branch
rcuit speciication? 1]
utput file ™ Amange cycle court for all condttional branches
+- Information
—scheduling block
& It is made parallel with other statements when there is no value of the scheduling_block attribute
" tis not made parsllel with other statements when there is na value of the scheduling_block attrbute: J

Defautt

Additional Options =

- 1000 -5 -Zresource_fert=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE 4b $ICYBER_PATH)/packagesfpaa_cv.BLIB 4
${CYBER_PATH}/packages/fpga_cv. FLIE +flfiter-auto FLIE +f fiter-emacro-auto. FLIE fc filter-auto. FCNT +fc fiter-amacro-aute FCNT 4mil fiter-auto. MLIB 4mc fiter-auto MCNT

Load... Save...

Figure 2-31. Operator Level Optimization

28

i

CWB - bdltran Option - filter{/filter/filter_1)

[~ Show advanced options

basic setting

Specify clock _constraint
Library

FU Libraries

Memery Libraries

Cther Libraries
gynthesize planning

i Macro

Error

detail setting

Circutt specification

Other optimizations
Scheduling

FU sharing
Aray/Memory
Regisier

F5M
Loop/Function
Pipeline

tool output

Circutt specification?
Output file
Informition

Languagedevel optimization

—Register sharing

-

[w Share registers between unsigned variables and signed variables

¢ Defautt

" Share register among different bitwidth variables

£~ Do not share register among different bitwidth variables

(" Share register except among signed variable and larger bitwidth variables
Unreferenced registers i+ Delete (Keep

Register binding at manual scheduling 8 Shars & Creste registers for each vanabls

—Register name
" Same register names as before Cyber Beta 3.4
@ Use varable name to register name

i for registers assigned to a single variable

| ™ for registers assigned to less than vanables

& for all registers assigned to variables

Maximum length of regsternamel?:Z—

™ Include function name in variable name

Al variable names and function names

st [chamcters of varisble name and all characters of function names
€ fist [characters of variable name and firt

characters of function names

—gated clock

‘ T L b o S A i ol

1000 = -Zresource_font=GENERATE -Zresource_ment=GENERATE -Zntemal_valid_sig_gen -Zdup_reset="ES -EE b ${CYEER_PATH!/packages/fpga_cv.BLIE
SICYBER_PATH)/packagesfpga_cv.FLIE +#l fiter-auto FLIB <l fiter-amacro-auto . FLIE Hc fiter-auto FCNT +fc fiter-amacro-auto FONT 4ml fiter-aute. MLIB 4mc fiter-auto MCNT

Default Additional Options » Load Save...

.. Specty clock_constraint
Library
- FU Libraries
- Memary Libraries
Other Libraries
syrthesize planning
+ Macro
=
detail setting
i Cirout specification1
Languagedevel optimization
{ Other optimizations
Scheduling
i+ FU sharing
to Aray/Memory
Register
FsM
Loop/Function
“ Pipeline
ool output
b Circuit specification2
- Ouiput file
Information

Figure 2-32. Different options for Register Sharing Exclusivity

CWB - bdltran Option - filter{/filter/filter_1)

I Show advanced options

—Inifial values &l vanable declaration

‘ (% Assign a the reset stale Assign at the first state

‘ |

—Heset state creation
‘ " Decided automatically (™ Creste ' Donot create

—Reset for register
¥ Do not reset registers without intial valus
I~ Reset registers connected to outplt sianal
™ Reset registers connected to valid_sig signals
[~ Inttialize shared registers in cument process

~Initialize uriritialized global signal(s)

[V Initialize unintialized global signalis).
{except for output signal(s) and global register amay(s))
[V Inttialize unintislized output signal(s).

v Inttialize unintialized global register amay(s).

~Clack/Reset for shared registers

(¢ Set the same clock/reset signal of shared registers as that of lower module which does write operation
€ Set cument module of clock/reset signal as input of shared registers

~Clock/Reset for shared memories
(% Set the same clock/reset signal of shared memories as that of lower module which does write operation
" Set curent module of clock/reset signal as input of shared memories

—Reset to submodule

I~ Specfy reset signal to be connected to module with only one reset port

Reset sianal name [

Default Addtional Options v Load... Save...

Figure 2-33. Options for reset state behavior defining

1000 s -Zresource._fent=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset="ES -EE 4b ${CYBER_PATH}/packages/fpga_cv.BLIB 4 S{CYBER_PATH}/packages fpga_cv FLIB +f
filter-awta.FLIB +fl fiter-amacro-auto FLIB Hfc fiter-auto. FCNT +fc fiter-amacro-auto. FCNT Hml fiter-aute. MLIB 4me fiter-auto MCNT

29

CWB - Veriloggen Option - filter(/filter/filter_2)

General lHie.zm»y | Fomat |

€ Simulation
" Synplify/Certify

Target

Multiplexer output format
default clause inthe case statement
Value to be assigned at default clause in the case statement
Reset mode of FF with initial value
Qutput line number
Output tool options as commerits
Output empy lower hierarchy module
FU output file
[~ Create separate register clock pin synchrorous with reverse phase
[V Add pragma about clock and reset infomation
Multiple intemal memory of same type
™ Same instancs module from each modile
NOT aperation on clock for synchronous memony
[Output memory mode! f it is synthesized as memory by logic synthesis tool
[~ Output memary simulation description
I~ Expand mutti-bit port of memory into muktiple one-bit ports
[~ Speciy moduls instance name in false path script for Design Compiler
[~ Multi bit pin name format at design compiler false path script

OO BO B RO SO T B O |

Logic Synthesis
Leonardo Exemplar
default
append f necessary
Undefined value X
Default

Yes

Yes

Yes

Same file

i case

@ Same module

* curent module

—
—

" Design Compiler

€ casex i ANDOR i ifelse
" change last item to defautt
(ol 1]
" Async reset with set port € Async reset without set port
£ Mo
 No
" Mo

€ Another file [OF v)

" Separste module

" under layer module

Default Addttional Options » Load..

&

Figure 2-34. Different options for RTL generation

C:/Users/deepak.pathania/ANSI-C/filter/filter_1/filter.bdl.dir/filter/filter_E.IFF

File Window WView Help

500 8D & |

-|Q,

Name | Kind | File Lines
E-fitter
- CLOCK ter {(0..0)
ter {0..0)
ter (7..0) /. fiterbdl: 15
ter (7.0) /. Aiterbdl: 16
= Datapath
[+ Function Unit
- Lower module
- Multiplexer
[+ Register
[~ Signal
- FSM
\ﬂ Nexd state logic
=1~ Signal
ter
ter
ter
ter
ter
ter
ter
ter
ter
ter
ter
ter
ter
] ter
- State Register
- State decoder
J (2 ol

T

f s = o s £ FF == [=R=T=
B
3y
2 !
B3R B ¥
m -~ K-
T L=
! - L
| & 4
@ 9
? L L Q
L3 =) 0@ (*iv] E
ta
=
wowow
S g Rt

ol

Figure 2-35. RTL Schematic Viewer

30

B

CWE - bditran Option - filter(/filter/filter_1)

I~ Show advanced options

Register

FSM
Loop/Function

& Pipeling

itool output

i Cirouit specification?
L Output file

& Information

basic sefting =
- Made ~Memory 1
i+ Clock/Resst KIND -
L. Spacify clock_constraint
DATAWIDTH
Library R1
i FU Libraries iy i F2
Memory Libraries & Default RW1
Chis] ¥ i © Mlocateto W2 b ronous read access and synchronous wite scasss {pipelined memory)
syrithesize planning R1W1 -
bl " Alocate to inaus read access and synchronous wiite access
L Eror
detail setting I~ Map amsy to memory with byte-snabls port
Circuit specification 1 The registeris insertzd before and after the access of the pipsline memary.
i+ Language-evel optimization I Input side
i+ Other optimizations Ou de
" Scheduling LiESees |
£ S’LEJQS‘W Postion of register before and after shared pipeline memory.

© The register is inserted in the module under the syrthesis.
(& It syrthesizes it assuming that the register is on the outside

—Register amay

Register amay mappedto (% Default shle LUTRAM style (Decoder style

—Shared amay

¥ Creste read enable for multiplexor(s) for address port of memony without read enable and chip select
I™ Create read enable for multiplexor(s) for address port of shared register amay(LUTRAM style)

B

1000 5 -Zresource_fort=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE 4b S{CYBER_PATH}/packagesfpga_cv.BLIE 4 $ICYBER_PATH)/packagesfpaa_cv.FLIB +H
filter-auto FLIB +f filter-amacro-auto. FLIB 4fc fiter-auto FCNT +#fc fiter-amacro-auto FCNT 4ml fiter-auta. MLIB 4mc filter-auto MCNT

Bxecute
Stap

Default Additional Options Load Save
ok | caeel | emy |
VA
Figure 2-36. Different options for selecting memories sync async
e CWE - bditran Option - filter(/filterilter_1) E
I~ Show advanced options
basic setting -
i Mode peony]
i~ Clock/Reset KIND -
L. Spacify clock_constraint
DATAWIDTH
Library Ri
i FU Lbraries —Memory acceg RZ
Memory Libraries o+ Default RW1
Otice fraiise € Hlocate to{ W2 bronous read access and syrichronous wite access (ppsiined memony)
syrithesize planning R1W1 -
alzicr Wnous read access and synchronous write access
S Emor
dr_atai\ sefting I Map amay to memory with byte-enable port
- Circuit specification 1 The register is inserted before and after the access of the pipeline memary.
i+ Language-evel optimization [~ Input side
Other optimizations Ou de
Schedhing Lftaes B
il Postion of register before and after shared pipeline memory.
! ge':fst;"‘“f * The registeris inserted in the module under the syrthesis.
L i @ It syrthesizes it assuming that the register is on the outside
& Loop/Funcion :
L Pipeline - Register amay
tool output Register amay mappedto (% Default shle LUTRAM style (Decoder style ‘
i Cirouit specification?
b Output file —Shared amay
- Infomation [# Creste read enabls for multiplexcors) for address port of memory without read enable and chip sslect
I™ Create read enable for multiplexor(s) for address port of shared register amay(LUTRAM style)
1000 5 -Zresource_fort=GENERATE -Zresource_ment=GENERATE -Zintemal_valid_sig_gen -Zdup_reset=YES -EE 4b S{CYBER_PATH}/packagesfpga_cv.BLIE 4 $ICYBER_PATH)/packagesfpaa_cv.FLIB +H Exeoite
filter-auto FLIB +f filter-amacro-auto. FLIB 4fc fiter-auto FCNT +#fc fiter-amacro-auto FCNT 4ml fiter-auta. MLIB 4mc filter-auto MCNT
Stop

Default

Additional Options v

Load Save

Figure 2-37. Different options for selecting memory register types

31

£ Emor I £ Waming | {3 Information | G Tips |
No | Eror Type Detail B
for loop is unrolled
{Source Lines]
07 1L.BTAR0Z 20(./fier o): for iy = 0: ky < KSIZE: ky++) {
A41(./. Aiter.c): for floc = 0; ko < KSIZE: fot)
The sequence of the operation in unrolled loop is optimized, and number of stages of operation is reduced.
008| |_BT4466 [Source Lines]
43(./ Aiterc). sum +=in_imagefy+y-1Jioc1] ~ coefflkylfiod: =
Since the number 4856 of statements after unrolling is large{> 512), loop cannot be unrolled.
011]1 BT2619 [Action] In the case of unrolling, specify attribute, or the option U# or -LIN).
- {Source Lines]
30(../.Aiter.c): for e =0; x < HLEN; x++) {
Since the number 4220 of statements after unrolling is large{> 512, loop cannot be unrolled.
012!1 BT4619 [Action] In the case of unroling, specify attribute, or the option {-U# or -LIN).
- [Source Lines]
29(_/ Aiterc) fordy =0y <VLEN:y+) {
Amay signal coeff is expanded at dimension #2 from right. ﬂ
n1al| oTaAAT 1€ s | el
Console Debug | /& fiter
——

Figure 2-38. Speculations suggestions for optimizations

Automatic top module generator to integrate different modules of (c-designed module or existing

RTL designs modules) and able to define top module in C as per the user requirement.

3

CWB - Top module generator - filter_1(/filter)

General iBehaviorlevel |

bl

Target project Ix‘ﬂlterxﬁrterj

Output file name |
Output directory

BODL

Top module name I

Description level for top module {* behavior " structure

I~ Do SADL transform that negede FF clock separstion

Specify monitor tap definition file |
[T Create monitortap pin for unused shared register

[T Create FCTS cell to clock winng

—Module List
Module Name | Input Level | Generste Port |
r'ﬁJter & Behavior ¢ Structure [T Clock [Fesst

Selectal | Alnonsslect | Addmodue. | Deletemoduie. |

Default Additional Cptions +

Figure 2-39. Top Module Generator

Generate I Cancel

32

Verification
Automated Test bench generator for simulation and synthesis and ability to generate test bench
at behavioral level and automatic conversion of those test vector for RTL. Automated SystemC

cycle accurate model generation for testing module level as well as system-level (top level).

i CWB - Simulation setting main - rtlsim(/filter/filter_1)

-

Main | Testbench | Simulation]

i~ Testbench
* Auto
@ Compare outplt value with the expected scenario
The name of scenario: | bsim |
™ Wite input /output value to the file

Wher to write: (8 Every cycle € Every valid cydle

—Build/Execution -
(s Generate simulation script{3)
" ModelSim SE (~ ModelSim \VCS " Riviera " NC-Verlog " Verlog¥L (¢ lcausVerdlog ¢ Vivado Simulator

I Runsmulatorin B4-bit mode

(" Specify simulation script{4)

] =

— Comment

i 'féﬁ"i"ﬁéi"'éﬁif§| Saveto Default

Simulgtion 0K | Cancel J Apply ‘

Figure 2-40. Verification Automated script generation

. ?
£l InputScenarioName .

Erter a Simulation scenaro name forthe Titer

—Simulation Level
" Behavioral " Cycle accurste » RTL ¢ onboad

f* RTLonly ™ SystemC co-simulstion

6], Cancel

Figure 2-41(a). Verification Automated TestBench Generation

33

e CWB - Simulation setting main - filter(/filter/filter_2)

Main | Model generate | Testbench I Build I Simulation I Diebugger I
~Input Data
How to provide data to the input data
& Random data " From pattem fils " From user function
When to provide data
i Everycycle £ Every valid cycle

Create separate test bench file l cpp

[Do not overwnite separate test bench file

—Data Radix of Pattem File:

* Hexadecimal " Decimal

—Compare (backwards-compatible option}

¥ It follows the settings of the expected scenano

When to-compare the value of cutput

& Everycyde " Every valid eycle |
]
-nput=random cycle -org_type=pin -enum_int=NO -out_dir=.
Generate model
Testbench
Default | Additional Options + | Load | Save... |

aukl Save to Default |

Bud | Smuston | Retuid | oK I Cancdl | ooy

Figure 2-41(b). Verification Automated TestBench Generation

Automated verifications or comparisons of results of C behavioral source code results with
Cycle accurate or RTL simulations results and display of results. Automated script generation
for third party RTL simulators for performing RTL simulations of the designs. Cycle-Accurate
SW/HW testing and co-simulation C source code Debugging of the RTL code, Cross Probing
between C code and RTL code, C source code testing and verification.

s

e e T T e e
A ol e B WE S O — =
ain TP

chematic viewer

wel

34

Figure 2-42. Cross Probing C-RTL code

CWB - Simulation setting main - filter(/filter/filter_2)

&

Main lModel generate Testbench i Build |S|rr|u|al|or| I Debuager I

Generate Debug Model
({3‘ Na © Yes

— Testbench
" Specify
C | ‘. fiter th e

Select al Al non-select

Wite input foutput value to the file

Whento wite: = Everycycle § Every valid cycle

= Auto
v Compare output value with the expected scenario
The name of scenario I l.i
I Wnite input/output valu !
Whento write; (e
csim
~Build :E”
* Auto genarate Makefile(1) 7 Spechy command 7 Scopar
Buid [
Clean |
—Execution

% Generste simulation scrpt(Z)

" Specify simulation scripti)

[o

=

Load from Defauft I Save to Default !

Buid | Smistion | Rebuid | ok | caed | sy |

&

Figure 2-43. Different options for automated verification comparison of results of C

Ability to use Transaction Level (TLM) Test Vectors for cycle accurate simulations as well as
RTL level simulations (Same test vectors for software can be re-used for cycle accurate

simulations).

e Dl e Bvge et B Apacpian Tooli - Wik b

D=mg -'L-funﬁEL|-l-ha.q C

= 7 Source

-

3
L [e et

o0 w3101

s Peadif i}

v bed ralll, rERd:

rpdt = g |

TP PSR

- [l ws_wimog i
L

e]
| B[t

‘3

(EHERE

e - eertaion e — ——— —

= W x O e mawe T f \erilog
QARFH S Q=] I FILE e QErleration
Frum 2 Tie [ii e Fema DXFFFFFFFR

sl
11 T 21
e
el e ot | s a0 1Y
wmil*r, mu-m\m—mn .

(L]
] T 18
al la]

- {synthesizable] [

35

&

Figure 2-44. Verification C Source Code Debugger

CWB - Simulation setting main - filter_behav{/filter/filter_1)

Main IModeIgenelate | Tesbench | Buid | Simuiston |

— Testbench
i~ Specify
File namelﬁlter_beha\r.cpp Add
ke [/. Aiter tb.c
Select &l | All mon-select |
* Auto
" Compare output value with the expected scenario
The name of scenario:' ;]

¥ Write input/output value to the file
When to write: " Every cycle @ Every valid cycle

—Build
{* Auto genarate Makefile(1) ¢ Specify command / Script(2)
Build |
—Execution

(* Generate simulation script(3)

(~ Specify simulation script{4)

Save to Defaut |

Buld | Smuston | Rebuid | ok | concel |

Figure 2-45. Different options for C Source Code Testing Verification

g

CWE - Simulation setting main - filter(/filter/filter_2)

Generate Debug Model
({2‘ No © Yes

i Testbench
i~ Specify
HER .4..-‘T\|ler7tb.c

Select all | Al non-select

[T Wrie input/output value to the file
When to wite: % Everycycle € Every valid cycle
& Auto
[¥ Compare output valus with the expected scenano
The name ofscenano:l x|
[~ Write input/output valu I
When to wite: @ Ev
csim
w7
(' Auto genarate Makefile(1) T Spechy command 7 sooptial
Build |

Clean |

Man | Model generele | Testbench | Build | Simuation | Debuocer | i

~Execution
f* Generate simulation script(3)
& Specify simulation scipt(4)

! e
Load from Defauft | Save to Default I

Buld | Smuamon | Rebuid | oK I Concel | mepy |

=

4

Figure 2-46. Cycle Accurate Software-Hardware Testing Co-simulation

Integration with Third Party Tools

Output generated should be compatible with other synthesis tools like Design Compiler, ISE,
Vivado, Synplify, Quartus etc. Ability to generate scripts for automatically invoking tools both for
Command Line User Interface (CUI) and Graphical User Interface (GUI). Provide waveform
viewer such as GTKWave integrated in the tool (With no additional license requirement). OSCI

(Open SystemC Initiative) simulator for cycle-accurate simulations integrated in the tool.

el Options ?
Option Settings
General } Key | Edtor | Meny | Display IMalysAs/Symhesis Simulation | Teol path }

PDFfile viewer-
¥ Use the defautt program associated with the extension " pdf™
4 |
Wave viewer- 2
GUl/debugger atkwave{CWE) Ea|
Propety checker gkwavelCWE) ~|
Install path
[whwave]
[C\Frogram Fies (<2} cyber'5 50/gliwave/bin/gtkwave J
nWave serverport | 10252 (102565534)
Command directory of logic synthesis tocl
Smpity | sompityom) |
ISE D-/Xiirx_ISE/14.7/1SE_DS/ISE/bin/nt64 /e _J
Vivado | Aivado J
Guartus 1 | Joiianis J

oK conced | pefat |

Figure 2-47. Different options for GTKWave Integration

e CWB - Logic Synthesis Settings - filter{/filter/filter_1)

Genisic } | sF | 1sE | Wvade | @TS | 2

¥ Follow project option
Device

i FPGA ASIC

family name cyclone
device name

package name |

speed grade

Target synthesis tuuleuar{us Il T
Top process |f|her

Logic syrthesis tool script (= Generate
© Speciy | _J
¥ Logic syrthesis tool script file
[~ Add timing S

| =l -]
| jid

-gyn_tool=gts "fiter_E.v" fpga_family=cyclone¥

Defautt Additional Options + Load I Save I
OK Cancel ‘ Apply |

Figure 2-49. Different options for Output generated compatibility

37

