
1. Introduction

31NEC TECHNICAL JOURNAL Vol.2 No.2/2007

the Performance Engineering Framework (PEF) shown in Fig.
1 as a technological system to realize this purpose. The PEF is
composed of mevalet, which is a performance measurement/
diagnosis tool developed using NEC-original technology with
performance prediction theory and templates, etc. at its core.
In the design phase, performance may be verifi ed in advance
by checking the method-level performance requirements and
behavior of software using existing software products and past
software assets. In the evaluation phase, the actual software is
run and measured using mevalet to verify the implementation
accuracy and to confi rm that the performance requirements
verifi ed in the upstream process are met. It also discovers bot-
tlenecks at an early stage, evaluates the performance improve-
ment measures and checks their effectiveness. The perfor-
mance can be implemented in this way, by checking the
performance requirements set in the upstream process at every
turning point of the design and development.

Embedded equipment such as the cellular phone, car-mount
devices and home electric appliances is experiencing rapid ad-
vancement of networking, improvement of functions, diversi-
fi cation of user needs, shortening of product lifecycles and re-
duction of product prices. These changes in trends are
enhancing the requirement for the embedded software for use
in embedded equipment to increase in scale, handle more com-
plicated targets and shorten the delivery term. Thereby reduc-
tions in the delivery term and development costs have become
critical management issues. In addition, the necessity for the
observance of related laws including the PL law and for im-
proved reliability to meet the advance in safety awareness of
the users is forcing the software in general to offer a higher
quality than before including improvements in ease of use and
an increase in processing speed. To meet these challenges, it is
required to improve software development productivity based
on a full understanding of the development processes in the
fi eld, including both distributed and concurrent development.

In order to prevent a performance-related problem before it
occurs, the software development process should be conscious
of implementing performance from upstream. We developed

Recently embedded software development has noticeably been increasing in scale and complexity, and reductions in the delivery

term and improvements in development effi ciency have now become critical management issues. To deal with them, NEC has

developed a performance measurement/analysis tool called “mevalet,” which is compatible with Linux running on ARM CPU, and

features an added data save function using a miniSD card instead of a data transfer function that uses the network. This tool has

improved the development effi ciency signifi cantly, making it possible to solve a performance issue that has not previously been solv-

able however hard we tried. This paper is intended to introduce this tool together with a description of cases in which it was actually

applied in in-house embedded software development.

Performance Measurement/Analysis Tool “mevalet”

KAWAMURA Kantou, SUZUKI Kazuaki, HORIKAWA Takashi, YAMASHITA Toshiaki, SAKAKI Daiya

Keywords

performance, performance measurement, analysis, embedding, development environment

Abstract

Embedded Software Development Environment Solutions

Fig. 1 Performance Engineering Framework.

2. Approach for Preventing Performance-Related
Problems

213E.indd 31213E.indd 31 07.6.18 3:18:39 PM07.6.18 3:18:39 PM

32

Performance Measurement/Analysis Tool “mevalet”
Embedded Software Development Environment Solutions

Fig. 2 mevalet architecture.

ble to display the behaviors of an application running on the
embedded system as a sequence chart on Eclipse. Additionally,
the system behavior can also be displayed integrally by switch-
ing the view to per machine, per process, per class or per meth-
od even with an embedded system that uses multiple machines,
and performance bottleneck analysis with a top-down approach
is also available. These user interfaces not only make an ad-
vanced performance analysis technology unnecessary and al-
low anyone to solve expert-level performance-related prob-
lems, but also enable us to “visualize” the causal associations
between performance-related problems.

Since the hardware architectures are not unifi ed in an embed-
ded system, the current mevalet required customization in
most cases because evaluation and verifi cation of application
are necessary per hardware. Specifi cally, confi rmation is re-
quired on the modifi cation of the part dependent on the CPU
architecture, the absence of the network for trace data transfer
and the method of time acquisition.

Fig. 4 shows details of the modifi cation of mevalet for devel-
oping Linux-based embedded software that runs on an ARM
CPU. In this case, mevalet is modifi ed to collect the necessary
events from the Linux kernel. In addition, the function for col-
lecting trace data in the SD card is added to compensate for the
absence of a network communication function. The use of

3.1 Outline of mevalet

Fig. 2 shows the architecture of mevalet. It installs hook
points inside the OS of the measurement target embedded sys-
tem to measure the performance and analyze the behaviors of
any application with a low overhead of some tens of nanosec.
to μsec. This is done independently from a specifi c product or
language and without the need of modifying the application.
The events that can be collected with mevalet include the wait-
ing, start, completion of CPU usage in kernel or user mode, the
inter-task interfacing and interrupts.

When the user performs an operation on the PC, mevalet
starts collection of events from the kernel and stores them in a
buffer. After the measurement, it transmits the collected data to
the analysis PC to let it analyze them, and also displays the
results on TraceView that is a mevalet-original display screen.
The menu displayed by right clicking on mevalet can display
information including the total CPU usage time per process
and the order of system call generation. For the Java applica-
tions, we developed the Java Probe for distinguishing the be-
havior of Java VM and applications. The Java Probe can auto-
matically be inserted between the components by defi ning the
information for Java Probe insertion in advance. This makes it
possible to analyze the behavior and performance of Java ap-
plications without modifying the applications.

As the development environment, we also developed the
mevalet TraceView plug-in that runs on Eclipse, which is the
de facto standard. Fig. 3 shows an example of behavior and
performance analyses on Eclipse. This plug-in makes it possi-

3.3 Application to Development of Linux-Based Embedded
Software That Runs on ARM CPU and Its Effects

3. Outline of mevalet, Its Application to
Embedded Systems and Its Effects

3.2 Eclipse Compatibility

Fig. 3 Example of behavior/performance analyses on Eclipse.

213E.indd 32213E.indd 32 07.6.18 3:18:40 PM07.6.18 3:18:40 PM

33NEC TECHNICAL JOURNAL Vol.2 No.2/2007

Special Issue : Embedded Software and Solutions

mevalet in the development of this embedded software has
made it possible to execute the primary analysis of perfor-
mance data quickly and easily. Furthermore, the possibility of
intuitive confi rmation of threads and operations including in-
terrupts has facilitated detection and identifi cation of prob-
lems, signifi cantly improving the productivity in solutions for
the issues related to Java performance and those of response
degradation due to increased CPU load. The man-hours have
also been greatly reduced, for example by enabling the solving
of problems, the cause of which has previously been untrace-
able even after a month of survey work.

We recognized a large number of positive quantitative ef-
fects brought about by mevalet in the development of embed-
ded software for Linux running on an ARM CPU, and are thus
currently deploying it in all of the development bases of spe-
cifi c departments of the NEC Group inside as well as outside
Japan. In the future, we will promote further development by
adopting a new mevalet architecture that does not require
modifi cation of the OS and by expanding the applicable OS
range for use in network and car-mount devices. We will also
enhance differentiation of mevalet by packaging various feed-
back and expertise obtained in-house as a result of its use.
＊ ARM is a registered trademark of ARM Limited in the UK and other coun-

tries.
＊ Linux is a registered trademark of Linus Torvalds in the USA and other

countries.
＊ Other brand names and product names mentioned in this paper are trade-

marks or registered trademarks of their respective owners.

Authors' Profi les

KAWAMURA Kantou
Senior Manager,
Software Development Environment Engineering Division,
Systems Software Operations Unit,
NEC Corporation

SUZUKI Kazuaki
Manager,
Software Development Environment Engineering Division,
Systems Software Operations Unit,
NEC Corporation

HORIKAWA Takashi
Senior Principal Researcher,
Common Platform Software Research Laboratories,
NEC Corporation
Member of IPS (Information Processing Society of Japan)

YAMASHITA Toshiaki
Assistant Manager,
Advanced Technology Solution Division,
NEC Informatec Systems, Ltd.

SAKAKI Daiya
Assistant Manager,
Third Solution Business Division,
NEC Software Hokuriku, Ltd.

Reference

1) “Performance Engineering Framework NO KAIHATSU (Development of
Performance Engineering Framework),” NEC GIHO, Vol. 58, No. 3.

 http://tj.nepas.nec.co.jp/techrep/journal/g05/n03/t0503a01.pdf

Fig. 4　mevalet modifi cation details.

4. Present Status, Future Perspectives

●The details about this paper can be seen at the following.
Related URL: http://www.nec.co.jp/cced/mevalet/

213E.indd 33213E.indd 33 07.6.18 3:18:41 PM07.6.18 3:18:41 PM

