
1. Introduction

16

which include the CPU, the memory layer including the cache,
the bus and the devices connected to peripherals. The tech-
niques for implementing OS coexistence can be classifi ed
roughly into the following three categories according to the
methods of their arbitration; 1) hybridization technique for
running all OSs except for one on an OS; 2) virtualization
technique for multiplexing hardware for the OSs; 3) native
technique by introducing a multi-core processor and applying
correction of OSs for arbitration (Fig. 2).

Table shows the features of these techniques. The perfor-
mance is highest with the native technique with which resourc-
es can be accessed directly from the OSs, the packaging cost is
lowest with the hybridization technique that uses an existing
OS for competition management, and the universality is high-
est with the virtualization technique that conceals the hardware

Since recently developed embedded systems such as the cel-
lular phone and car-mount devices should be capable of com-
plicated information processing, they require high functional-
ity in addition to the traditional requirements for embedded
systems of high responsiveness and high reliability. However,
a real-time OS such as ITRON does not have high functional-
ity because it has to secure responsiveness and reliability by
providing the minimum number of functions mainly targeted
as equipment control type processing. On the other hand, a
high-function OS targeted at advanced information process-
ing, such as Solaris, Linux or Windows, cannot secure enough
responsiveness and reliability compared to a real-time OS be-
cause improvement of the OS functionality complicates the
packaging, degrades the predictability and makes it impossible
to achieve the high responsiveness and reliability required for
embedded systems. As a result, there is for the present no OS
that is suitable for embedded systems with a high functionality
requirement (Fig. 1).

In consequence, to implement an embedded system with
practical high functionality, it is necessary to develop a tech-
nology that allows multiple OSs with different properties to
coexist in a single system.

One of the issues in running more than one OS on a single
system is how to eliminate competition between resources,

It is predicted that in the future there will be a need for embedded equipment that will feature very advanced information processing

and high-functionality to enable very complicated processing. This is as important as the traditional requirements for high reliability

and high responsiveness. This paper proposes a dual OS that fulfi lls all of the above requirements by combining a real-time OS for

embedding and an SMP OS for use as the server. Its effectiveness is demonstrated by packaging it with the MPCore SoC multi-core

processor for embedded applications.

High Reliability and Performance of OS-Compatible
Systems for Embedding Purposes
ABE Tsuyoshi, SAKAI Junji, TORII Sunao

Keywords

multi-processor, embedded system, real-time OS, high-function OS, responsiveness, reliability, functionality

Abstract

Embedded Systems/Platforms

Fig. 1　Requirements for embedded systems.

2. OS Coexistence Techniques

204E.indd 16204E.indd 16 07.6.15 9:56:08 PM07.6.15 9:56:08 PM

17NEC TECHNICAL JOURNAL Vol.2 No.2/2007

Special Issue : Embedded Software and Solutions

Fig. 3　Confi guration of OS-coexistent system.

of a fast on-chip inter-OS communication mechanism. We ad-
opted software-based solutions for these issues (Fig. 3 upper
part).

In this solution, we divided the OSs into three mechanisms
according to purpose. In the arbitration layer, we packaged
mechanisms for the initialization of shared devices, setup of
access-restricted hardware, startup of OSs and arbitration be-
tween OSs in order to solve the device arbitration issue raised
in 1). In the communication layer, we packaged the mecha-
nism for inter-OS communication in order to solve issue 2).
Here, we used the same inter-processor communication mech-
anism used in the multi-core system to achieve communica-
tions at a high speed. We installed an OS that is modifi ed to
solve the issue of competition between shared devices using
the arbitration layer in each CPU to solve the overall issues of
OS coexistence.

On the other hand, the issues in meeting the requirements for
embedded systems include; 3) prevention of performance deg-
radation due to inter-OS interference; 4) reliability in the case
of OS runaway. We adopted hardware-based solutions for
these issues (Fig. 3 lower part). For issue 3, we attempted a
solution by utilizing the interrupt distribution mechanism and
fl exible cache setting facility of the MPCore multi-processor
for embedded use, and succeeded in reducing the effects on
performance from other OSs thanks to an independent inter-
rupt setting for each OS and L1 cache coherency setting. For
issue 4), we solved this problem by proposing an access con-
trol function that can restrict access to specifi c registers in the

Fig. 2　OS coexistence techniques.

Technique Advantages Disadvantages

Hybridization

Low costs thanks to batch man-
agement of competition resources
using existing OS.

The entire performance and system
are determined depending on the
managing OS. The performance of
the embedded OS may degrade.

Virtualization

High universality thanks to avoid-
ance of competition in low-level
layers.

The performance and reliability
tend to decrease due to the soft-
ware processing for hardware mul-
tiplexing.

Native
Little performance degradation
thanks to direct resource access.

A multi-processor is necessary.
High dependency on the hardware
reduces the universality.

Table　Comparison of OS coexistence techniques.

layer. For embedded systems with which malfunction is some-
times fatal, OS separation using software becomes a factor de-
grading the reliability. At NEC, we have determined that the
native technique is most suitable for embedded systems con-
sidering the suitability of the above coexistence techniques to
embedded systems. Moreover, it has already become realistic
to incorporate multiple processors in an LSI for embedded sys-
tems thanks to the progress of semiconductor integration tech-
nology.

In order to build a practical embedded system using the na-
tive technique the technology for OS coexistence is not by it-
self enough, a technology for maintaining high responsiveness
and reliability proper to embedded systems is also necessary.
From this viewpoint, we determined the following issues and
attempted to solve them from the aspects of both software and
hardware.

The OS coexistence issues include; 1) arbitration between
devices that share a single physical resource; 2) the provision

3. OS-Coexisting SoC Environment
for Embedding Applications

204E.indd 17204E.indd 17 07.6.15 9:56:09 PM07.6.15 9:56:09 PM

18

High Reliability and Performance of OS-Compatible Systems for Embedding Purposes
Embedded Systems/Platforms

The response time (time from generation of an interrupt to
startup of the interrupt handler) was 3μs on average and 6μs in
the worst case. As it was maintained as high as 6μs on average/
15μs in the worst case even when maximum load (100% band-
width) was applied to the bus under concurrency of the two
OSs, we were able to confi rm that the system was capable of
maintaining a high responsiveness. In addition, due to the fact
that the worst value trend did not change at or above a certain
load, we could also confi rm that a certain performance can be
maintained thanks to the mechanism (round robin mechanism)
ensuring fair arbitration of requests from the CPUs to a bus
(Fig. 5).

In the above, we propose an overview of the requirements
for next-generation embedded systems and describe the efforts
made at the NEC Group for the multi-core-based SoC system
technology for use with them.

At NEC, we are able to make full use of the hardware and
software technology of the NEC Group that has been devel-
oped up to the present time, so that we can continue to make
proposals for embedded systems with higher reliability, higher
performance and higher functionality for our customers in the
future.

MPCore of each CPU and an address fi lter that restricts the
accessible address space per CPU.

Such measures made it possible for us to build a system that
can always maintain high responsiveness and reliability of the
real-time OS even in the case of runaway of a high-function
OS running on an adjacent CPU.

Specifi cally, it was NEC Corporation that proposed such a
system architecture for embedded applications and it was NEC
Electronics Corporation that designed and packaged the MP-
Core SoC for embedded applications in collaboration with
ARM Ltd.

We built a dual-OS environment with TOPPERS/JSP and
SMP Linux, mounted a demonstration system for car-mount
use in this environment, and demonstrated that the OS coexis-
tent environment for embedded systems discussed herein can
meet all of the responsiveness, reliability and functionality re-
quirements simultaneously.

Fig. 4 shows the confi guration of the demo system, which
runs a road condition recognition application by linking the
image processing on TOPPERS/JSP and the recognition pro-
cessing on Linux. The application also displays a map showing
the current vehicle position and related information on a
browser running on Linux. In addition, a performance monitor
functions as the performance display and irregularity monitor-
ing system on each OS. It was thus proven that the OS coexis-
tence is practical and possible when using this confi guration.

With regard to the reliability of the real-time OS, we attempt-
ed to use the mutual OS monitoring function mounted in the
performance monitor for detecting abnormal load and dead-
lock in Linux, and forced the termination of the CPU used by
the Linux as a trial. As a result, we were able to confi rm that
the TOPPERS/JSP does not lose stability even when Linux is
malfunctioning and that a forced termination of Linux does not
affect the operations of TOPPERS/JSP.

Fig. 4　Confi guration of demonstration system.

4. Verifi cation

Fig. 5　View of demonstration.

5. Conclusion

204E.indd 18204E.indd 18 07.6.15 9:56:09 PM07.6.15 9:56:09 PM

19NEC TECHNICAL JOURNAL Vol.2 No.2/2007

Special Issue : Embedded Software and Solutions

Authors' Profi les

ABE Tsuyoshi
SoC Design TG,
System IP Core Research Laboratories,
NEC Corporation

SAKAI Junji
Principal Researcher, SoC Design TG,
System IP Core Research Laboratories,
NEC Corporation
Member of IPS (Information Processing Society of Japan) and IEEE-CS

TORII Sunao
Principal Researcher, SoC Design TG,
System IP Core Research Laboratories,
NEC Corporation
Member of IPS

204E.indd 19204E.indd 19 07.6.15 9:56:10 PM07.6.15 9:56:10 PM

