
NEC Journal of Advanced Technology, Vol. 2, No. 1 53

Special Issue on Security for Network Society

ABSTRACT

Falsification Prevention and Protection Technologies and Products

A Behavior-Based Process Confinement Method and Its
Application to a Server Security Solution “StarDefence”
By Masayuki NAKAE,* Ryuichi OGAWA,* Yasushi SATO† and Sonomi SHIOZAWA†

*Internet Systems Research Laboratories
†System Platform Software Development Division

Conventional server applications such as Web applications usually perform their tasks through
the collaboration of several processes including CGI processes and shell processes, etc. If any of

the processes are taken over by attackers, the security of the entire applications could be compromised. To
protect the server applications, it is necessary to protect all related processes. We propose a behavior-based
process confinement method that restricts irregular process behavior. This method prevents the process
behavior from violating given rules, called Context-Sensitive Policies (CSP). CSP’s specify not only a set of
system calls that each process is permitted to invoke, but also the relationship between system call sequences
and application-dependent specifications, so that they can correctly describe the normal behavior of server
applications. This paper describes a CSP matching algorithm with actual process events and how the algorithm
efficiently prevents the processes from being taken over by attacks such as code injection. This paper also
describes the implementation of this method and the result of its evaluation.

KEYWORDS System security, Process confinement, Attack prevention, Server applications, Security solution

1. INTRODUCTION

Many companies and organizations run network
services such as advertising services for their custom-
ers via the Internet and information services to their
employees via their intranet. There are, however,
various threats to these network services. For in-
stance, Internet worms can quickly spread over many
servers, intruders may steal confidential and propri-
etary information, and so on.

To protect potentially vulnerable server applica-
tions, pattern-based attack prevention methods have
been proposed[1,2]. These methods detect the charac-
teristic pattern of process behavior observed when
the server application is infected by malicious codes.
These methods monitor machine instruction flows,
and detect illegal operations on memory such as stack
overflows.

Process confinement methods have also been pro-
posed[3-5]. These methods restrict the behavior of
individual processes based on given rules, called poli-
cies, and seek to guarantee that no process will access
any resources that are not authorized in the process

specifications even when malicious codes are injected.
For example, once a policy that prohibits a process
writing the file “/etc/passwd” is issued, then the proc-
ess cannot modify “/etc/passwd,” even if the process is
infected by malicious codes.

Since normal behavior of applications is usually
application-specific, we need to enforce policies that
can reflect such application dependency. The problem
of existing process confinement methods is that they
do not accept application-dependent policies. For ex-
ample, they do not accept a policy that permits only
administrators on an authorized site accessing a re-
mote application maintenance service.

In this paper, we propose a behavior-based confine-
ment method using policies that describe the relation-
ship between process behavior and application-
dependent specifications. We call the policy a Context-
Sensitive Policy (CSP).

We also propose a server behavior model, called
Behavior-Tree, to develop an efficient algorithm to
compare process behavior and CSP’s. The model rep-
resents the relationship between each event and the
application status. Based on this method, we have
developed an experimental sandbox mechanism,
called S-Tracer, which can efficiently monitor each
process and enforce CSP’s for the processes.

In the following sections, we first describe the
behavior-based process confinement method (Section

54 NEC J. of Adv. Tech., Winter 2005

2). Next we show a behavior-tree construction algo-
rithm and a CSP matching algorithm based on the
behavior-tree (Section 3). We also explore the imple-
mentation issues of S-Tracer, and its application to a
practical security solution, named “StarDefence”
(Section 4). Furthermore we show the evaluation re-
sults of the effectiveness, performance and adminis-
trative workload (Section 5). Finally we conclude in
Section 6.

2. BEHAVIOR-BASED PROCESS CONFINE-
MENT

2.1 Requirements
Let us consider a Web application that has two

services, Service A and Service B, as shown in Fig. 1.
Service A provides a confidential data search service
for authorized users. Service B provides a browsing
service using PHP for the Internet.

If the CGI process in Service A and the PHP proc-
ess in Service B are vulnerable, an attacker may
access the confidential data by taking over either of
the vulnerable processes and injecting malicious code
into the shell process. In order to detect such mali-
cious behavior, it is necessary to monitor not only the
server processes, but also other processes of the appli-
cation.

In addition, consider when Service A has an
application-specific rule that it accepts only autho-
rized clients. Then an attacker on an unauthorized
client may inject malicious code into the CGI process
or the shell process. If we can identify the client
accessing the shell process, we can detect the viola-
tion of the application-specific rule and prevent the
shell process from being taken over.

Furthermore consider when Service A has another
application-specific rule that it does not accept any
request of Service B. Then an attacker on an attack-
ing client who intruded into Service B may attempt a
secondary attack against the shell process via the
PHP process. If we can confirm that the parent proc-
ess of the shell process does not originate from Ser-
vice A, then we can detect the violation of the
application-specific rule and protect the shell process.

These examples show the following requirements
of the process method:

(a) Comprehensiveness: Any process behavior on the
server must be watched.

(b) Identifiability: Each access request (i.e. the client)
that triggers each process must be identified.

(c) Traceability: The history of process execution
must be traceable.

(d) Knowledge of normal behavior: The current proc-
ess behavior must be validated based on the
knowledge of normal process behavior including
application-dependent specifications.

2.2 Proposed Method
To meet the above requirements, we construct two

methods: a behavior model of the application, and a
knowledge description model of the normal process
behavior.

2.2.1 Behavior Model
For requirements (a), (b), and (c), we develop a

behavior model, called Behavior-Tree, which is com-
prised of system call events of a server application.

A behavior-tree is an ordered tree comprised of
process nodes and event nodes. Process nodes

Fig. 1 Example of attacks using code injection of vulnerable processes.

55

NEC Journal of Advanced Technology, Vol.1, No.4

NEC Journal of Advanced Technology, Vol. 2, No. 1

Special Issue on Security for Network Society

correspond to process creation events such as
fork(2), execve(2), etc. Event nodes correspond to
other system call events including accept(2). An
example behavior-tree is shown in Fig. 2.

The behavior-tree is updated every time any proc-
ess of the server application issues a new system call
event, so that the tree always holds the whole event
history of the application. Nodes related to already
finished sessions are discarded for memory efficiency.

The behavior-tree satisfies the following condi-
tions:

· Condition 1: A process node can have child nodes if
and only if the corresponding process actually gen-
erates corresponding events (including a process
creation event).

· Condition 2: The order of child nodes holds the
order of event occurrences.

Condition 1 guarantees that the parent-child rela-
tionship of process nodes corresponds to that of the
processes, so that the descending node sequence to
the current-event node from the server-process node
corresponds to the process-execution sequence until
the shell process generates the current event (see Fig.
2). The service where the current event occurs can be
identified as a sequence of process execution.

Conditions 1 and 2 guarantee that an accept(2)
event node on the left side of the current event node
corresponds to the access request that triggers the
current event (see Fig. 2). Since an accept(2) event
has an IP address of a client as one of its event
attributes, the client can be easily identified by the

accept(2) event node.
Thus the behavior-tree represents behavior of the

server application, and meets the requirements of
comprehensiveness, traceability and identifiability.
We describe the behavior-tree construction algorithm
in Section 3.1.

2.2.2 Knowledge Description Model
To meet requirement (d), we develop a knowledge

description model of the normal process behavior,
called Context-Sensitive Policy (CSP). CSP can
specify the relationship between the application-
dependent specifications and each type of process be-
havior (i.e. a sequence of system calls).

CSP has three attributes: an identity context C, a
service context S, and a process-behavior specifica-
tion PB. CSP is formally denoted as follows:

CSP = (C, S, PB)

The identity context C specifies authorized clients,
and is formally described as a set of IP addresses of
the clients.

The service context S specifies a sequence of
process-creation events. It is formally described as
follows:

S = (h0, h1,...., hn) ,

where hi (1 ≤ i ≤ n) is a process invoked by its parent
process hi−1 .

The process behavior specification is a set of sys-
tem call events that a process is permitted to issue. It
is formally described as follows:

PB = {(syscall, P)} ,

where syscall is a system call, and P is a set of re-
sources.

Therefore CSP implies that if a currently observed
process h is the last process hn in S or one of its
subprocesses, and if an access request sent by a mem-
ber of C has triggered h, then the behavior of h is
subject to PB.

From a system administrator’s point of view, it is
natural to consider a set of CSP’s as a policy descrip-
tion for a server application, since a single CSP is too
simple to adequately describe the behavior of a com-
plicated server application. Hereafter we call each
CSP a “CSP statement” (or simply “statement”) and a
set of statements a “CSP description” (or simply “de-
scription”). In a CSP description, each statement is
evaluated in its order of occurrence. This evaluation

∆

Fig. 2 Example behavior-tree (the rectangu-
lar nodes correspond to event creation
events, and the oval nodes correspond to
any other events such as file operations.)

∆

∆

56 NEC J. of Adv. Tech., Winter 2005

procedure is terminated the first time a new system
call event meets a certain statement. Please note that
if the event meets no statements, then the evaluation
procedure is terminated and the event is forbidden by
default.

We show an example of CSP description in List 1.
It comprises two statements. The first statement is
described in lines 1 to 3, where line 1 specifies an
identity context that permits access requests from the
site “.admin.com.” Line 2 describes a service context
that specifies a process execution sequence compris-
ing a server process “/usr/sbin/httpd” and its subpro-
cess “/var/www/cgi-bin/admin.cgi.” Line 3 describes a
process behavior specification that specifies a set of
system call events to write files in the directory “/var/
www/html” and its subdirectories, where the modifier
“ALLOW” accepts the preceding event set as a
process-behavior specification.

On the other hand, the second statement as de-
scribed in line 5 forbids any other processes* to write
files in the directory “/var/www/html” and its
subdirectories, since the modifier “DENY” accepts a
complementary set of the preceding event set as a
process behavior specification.

Consequently the example description shown in
List 1 permits only the administrators on the site
“.admin.com” to maintain the Web contents allocated
in the directory “/var/www/html” only if they use
“admin.cgi,” while users on unauthorized sites are
forbidden to rewrite the Web contents. By such combi-
nation of CSP statements, CSP description can
specify the relationship between application-
dependent specifications and the process behavior of
“admin.cgi.”

2.2.3 Behavior-Based Process Confinement
Since the accept(2) event and the succeeding

process-execution sequence related to the current
event can be efficiently extracted from the behavior-
tree, both the identity context C and the service con-
text S are easily compared with the extracted event
sequence. On the other hand, the process behavior
specification PB is also easily compared with the cur-

rent event. Thus each observed event is efficiently
validated according to CSP policies, and any invalid
event can be blocked as soon as it is detected.

We describe the details of the CSP matching algo-
rithm in Section 3.2.

3. BEHAVIOR-TREE ALGORITHMS

3.1 Construction Algorithm
Basically a behavior-tree construction algorithm

comprises the following steps:

1) Create an appropriately typed node (i.e. process
node or event node) of a newly observed event. The
node and the event are called the current node and
the current event, respectively.

2) Find an appropriate parent process node of the
current node.

3) Attach the current node to the process node as its
rightmost child.

In step 1), the current node attributes are also
generated. The attributes include the current event
identifier (e.g. the system call name), its parameter
values, and the process identifier (PID) of the process
that generated the current event. Since general OS
kernels assign a unique PID to each created process,
the tree already has the corresponding process node
with the PID. Therefore, step 2) can find the parent
process node that has the same PID as that of the
current node.† Steps 2) and 3) thus guarantee that
behavior-trees generated by the algorithm always
maintain the two conditions described in Section 2.2.

List 2 shows the complete construction algorithm,

*The identity context “0.0.0.0/0” represents “any cli-
ents,” and the service context “.*” represents “any proc-
esses.”

†Strictly speaking, step 2) chooses the most recently
created node among process nodes with the same PID in the
tree.

1: .admin.com;\\

2: </usr/sbin/httpd></var/www/cgi-bin/admin.cgi>;

3: write,^/var/www/html/.*;ALLOW

4:

5: 0.0.0.0/0;.*;write,^/var/www/html/.*;DENY

List 1 Example of CSP policy description.

57

NEC Journal of Advanced Technology, Vol.1, No.4

NEC Journal of Advanced Technology, Vol. 2, No. 1

Special Issue on Security for Network Society

which constructs a corresponding behavior-tree from
a given event sequence. Here we consider topological
properties of the behavior-tree T(e) constructed from
the event sequence e beginning at the creation event
of a server process h0 (Fig. 3). In general, whenever a
server application receives a new access request, its
server process invokes an accept(2) system call to
receive the request data. Then h 0 generates a new
session, in which related tasks are performed by h0

itself or by its subprocesses. Therefore, all nodes cor-
responding to events of each session must be descen-
dants of the process node n(h 0) corresponding to the
server process h0 in the behavior-tree T(e), so that

T(e) has the following properties:

· Property 1: The node n(h 0) corresponding to the
server process h0 is the root of T(e).

· Property 2: An accept(2) event node accept(r) gen-
erated when the application receives a request r is
a child node of n (h0).

· Property 3: An event node accept(r) and all trees in
T(e (r)) appear successively as children of n(h 0),
where T(e (r)) is a set of trees* corresponding to an
event sequence e (r) that is generated in a particu-
lar session triggered by a request r .

These properties enable behavior-trees to have a
modularized structure according to individual ses-
sions, even if multiple sessions are processed by a
server application in parallel (see Fig. 3 again).
Therefore, a search space for the accept(2) event
node related to the current node is limited to a local
subtree, enabling us to develop the efficient CSP
policy-matching algorithm described in the next sec-
tion.

3.2 CSP Matching Algorithm
The CSP matching algorithm is composed of two

parts: service context matching and identity context
matching.

3.2.1 Service Context Matching
The matching algorithm for a service context com-

prises two steps: (a) extract a sequence of related
process execution, and (b) match the sequence with a
service context of a CSP policy. The first step extracts

Fig. 3 Behavior-tree generated by a server application in successive sessions.

*In this paper, we regard a single node as a tree.

~

~

List 2 Behavior-tree construction algorithm.

algorithm construct_behavior_tree
input: e : a sequence of events.
output: T: TTTTT(e) corresponding to e.

begin
T := k ;
while (e is not empty) do
ev := dequeue(e);
if (ev is a process creation event)
then m := create_process_node(ev);
else m := create_event_node(ev);
pid := get_process_id_of (ev);
n := find_process_node(pid, T);
if (n is not found)
then T := T added m as an isolated node;
else T := T added m as the rightmost child of n
end;
return T

end.

58 NEC J. of Adv. Tech., Winter 2005

the sequence of process nodes by traversing a
behavior-tree from the current node to the root node.*
The reversed sequence corresponds to the process-
execution sequence Π = (h 0,...., h i−1, h i) related to the
current event. The second step compares Π to the
service context of the policy using a string pattern
matching method.

Assuming that the behavior-tree is approximately
well balanced, the average computational cost of the
first step is O(log(N)), where N is the size of a
subtreeT(e(r)) in since the length of Π equals the
depth of the current node in the subtree. The compu-
tational cost of the second step is also O(log(N)) be-
cause it is linear to the length of Π. Consequently the
entire cost of evaluation is O(log(N)).

3.2.2 Identity Context Matching
The matching algorithm for an identity context is

composed of two steps: (a) search an accept(2)
event related to the current node and (b) match an IP
address of a corresponding client with the identity
context. The first step searches the accept(2) event
node by a procedure called clockwise traversal (see
List 3). The procedure picks the accept(2) event
node accept(r) that is nearest to the current node n on
its left side.† The existence of such a node and the
correctness of node selection are guaranteed by prop-
erty 3. The second step compares an IP address of a
client described in the accept(2) event node with
the identity context using simple bit calculation. Ob-
viously, the computational cost of the first step O(N)
is and that of the second step is of a constant order.
Moreover, we can reduce the size of the behavior-tree
by removing already validated event nodes from the
tree (except accept(2) event nodes). This causes
the complexity of the traversal procedure depend on
only the tree’s depth. The evaluation cost of the iden-
tity context can therefore be limited to O(log(N)).

Finally, the entire computational cost of the CSP
matching can be limited to O(log(N)). Since N is the
size of the subtree which holds the current node, the
efficiency of policy matching is independent of the

number of sessions. Furthermore, the logarithmic or-
dered matching cost is robust to long-term sessions,
making the CSP matching algorithm suitable for
large-scale server applications.

4. IMPLEMENTATION

4.1 Architecture
Based on the behavior-based confinement method,

we have developed a new sandbox mechanism, called
S-Tracer. S-Tracer comprises of the following compo-
nents (Fig. 4):

· Interception module: This module intercepts sys-
tem call events triggered by any process of the
server application, and discards forbidden events
detected by the detection module.

· Tracking module: This module constructs a
behavior-tree from the intercepted events and me-
diates the interaction between the interception
module and the detection module.

· Detection module: This module compares the cur-
rent behavior-tree with given CSP policies, and
detects irregular process behavior.

4.2 Implementation Details
S-Tracer is implemented as a loadable kernel mod-

ule (LKM). Its interception module (1) hooks system

*The current node is not included in the sequence, even
when it is a process node.

†If we can assume that a server process node is always
the root of an arbitrary behavior-tree, there is a more
straightforward method to find the accept(2) event node.
However the assumption does not hold in general; thus the
clockwise traversal is employed as a general method.

~

procedure clockwise_traversal
input: T: the current behavior-tree,
 n: the current node.
output: acc: the accept(2) event node.

begin
cn := n;
pn := parent(cn);
while (pn exists) do

s := next_sibling_on_the_left_hand(cn);
while (s exists) do

if (s is an accept() event node)
then do acc := s; return acc end;
s := next_sibling_on_the_left_hand(s)

end;
cn := pn;
pn := parent(pn)

end;
return OUT_OF_SESSION

end.

List 3 Clockwise traversal procedure.

59

NEC Journal of Advanced Technology, Vol.1, No.4

NEC Journal of Advanced Technology, Vol. 2, No. 1

Special Issue on Security for Network Society

call handlers to intercept system call events gener-
ated by all processes, (2) passes each system call
event to the detection module through the tracking
module, and (3) prevents OS from performing of an
illegal system call when the detection module detects
its violation against a given CSP.

This implementation method contributes to satis-
fying the comprehensiveness requirement mentioned
in Section 2.1. Some existing mechanisms are imple-
mented in user space such as software wrappers [4,5].
Generally, these methods can be implemented more
easily than LKM, and can monitor independent be-
havior of individual processes because they are em-
bedded in each targeted process. Meanwhile, S-
Tracer can monitor behavior of all processes because
any system calls are processed by a single system call
handler in which the interception module is embed-
ded.

4.3 Application to a Server Security Solution
We have integrated S-Tracer into a security solu-

tion for Web applications, named “StarDefence.” The
main feature of StarDefence is to provide an inte-
grated management environment for Web contents
and server security.

This system uses S-Tracer as an attack detection
component. In addition, as shown in Fig. 5, it consists
of the following four components; (1) a management
GUI, which provides Web-based GUI to server admin-
istrators; (2) an auditing module, which records Web

content updates; (3) an access control module, which
automatically performs emergency response against
attacks; and (4) a logging module, which collects any
alert generated by OS, libraries, S-Tracer, etc.

The management GUI enables server administra-
tors to edit CSP descriptions for S-Tracer, to monitor
logs and alerts, to maintain Web contents, etc. As for
CSP editing, StarDefence can handle enhanced CSP
statements, in which server administrators can de-
scribe ALLOW, DENY, WARN or RECOVER as
process-behavior specifications; ALLOW and DENY
have the same semantics as mentioned in Section 2.2.
WARN specifies forbidden process behavior as does
DENY. However, this does not imply that S-Tracer
has the forbidden behavior interrupted, but only that
it generates an alert that reports the occurrence of
such behavior. Moreover, RECOVER makes the au-
diting module record an illegally modified content
and then recovers the original one. Appropriate
DENY specification ensures the prevention of dam-
age; however, its misuse would damage availability of
the applications. These enhancements, therefore, pro-
vide useful options that assist server administrators
to be sure of Web applications availability.

The purpose of the access control module is, in
collaboration with some firewall products such as Ex-
press5800/SG and ipchains, to interrupt continual
attacks. Whenever S-Tracer detects that an attack
has happened, this module immediately requests the
previously designated firewall to block further access

Fig. 4 Architecture of S-Tracer.

60 NEC J. of Adv. Tech., Winter 2005

Fig. 5 Brief structure of StarDefence.

requests from the attacker’s IP address detected by S-
Tracer. This feature contributes especially to Internet
worm prevention, since recent Internet worms tend to
send malicious messages to the same server repeat-
edly.

Thanks to these features, StarDefence encourages
both security and availability of Web applications.
We would like to extend the target to general Internet
server appliances in future.

5. EVALUATION

5.1 Effectiveness
In this section, we describe the effectiveness evalu-

ation for CSP policies by performing pseudo attacks
against an experimental Web application.

We first prepared the experimental Web applica-
tions comprising Apache 2.0.27 Web server daemon
and two CGI applications on Linux 2.4.18. One of the
CGI applications provides a personal information reg-
istration service for external network domains
(“register-pl.cgi”), while the other provides a browsing
service of the registered information for administra-
tors on an authorized network domain (“view-pl.cgi”).
We implemented the CGI applications in Perl, and
embedded command injection vulnerability in them
intentionally.

Next we prepared S-Tracer with CSP policies
specifying the normal behavior of the daemon proc-
ess, the CGI processes, and subprocesses of the CGI
processes.

We then developed six types of pseudo attack code
with the following functions implemented:

① Illegal modifications of the password file (“/etc/
passwd”).

② Illegal modifications of the personal information da-
tabase (“/var/lib/present2003/info.csv”).

③ Illegal references to the password file.
④ Illegal references to the personal information.
⑤ Illegal installation of a backdoor daemon listening

to the port 38129.
⑥ Illegal installation of a Trojan process sending the

application data contents to a remote server.

We encoded the six attack codes into the twelve
URL strings for the two CGI applications, and then
infected the Web application with the attack codes
from the external network. As a result, S-Tracer suc-
cessfully prevented all attacks without actual harm.

For example, all attacks against “view-pl.cgi” were
blocked immediately after the CGI process had been
invoked, since the access request was sent from an
unauthorized domain (i.e. the identity context viola-
tion). On the other hand, the illegal modification at-
tack against “register-pl.cgi” (No.2 in the above list)
was blocked before the application data was modified.
This is because a shell process invoked by “register-
pl.cgi” directly tried to modify the application data,
though the normal behavior of the shell process was
supposed to send a thank-you mail to the registered
person (i.e. the service context violation).

The result shows the effectiveness of S-Tracer
against illegal code injection attacks. We also con-
firmed that S-Tracer could prevent some in-the-wild
exploits such as “OpenFuck”[6] and “Wu-ftpd common
vulnerability attack”[7].

61

NEC Journal of Advanced Technology, Vol.1, No.4

NEC Journal of Advanced Technology, Vol. 2, No. 1

Special Issue on Security for Network Society

a) without b) with Overhead
S-Tracer S-Tracer (===== b−−−−− a)

Avg. CPU 2.93 3.43 0.50
load (%)

Avg. throughput 209.79 209.79 0.00
(KB/sec)

Avg. turnaround 0.0011 0.0010 −0.0001
(msec)

5.2 Performance
In this section, we explain the performance evalua-

tion for S-Tracer by simulating typical network traf-
fics. This simulation is based on an access log re-
corded by a Web server that actually runs in an
Internet service provider.

The experimental server has a Pentium 4 2GHz
processor and 1GB of memory, while the client has a
Pentium 3 1GHz processor with 512MB of memory.
They are connected by 100BASE-TX (Full-Duplex).
The access log is for 24 hours and has 4,350,932
records. Its minimum, average and maximum access
rates are 299 accesses per minute, 3021.5 and 6943
respectively. In order to simulate such network traf-
fic, we have developed an automatic access tool in
Java that sends HTTP requests at the same access
rate as the given access log, and made it run on the
client for 24 hours.

In this experimental system, we recorded transi-
tions of CPU load, network throughput and turn-
around time of the server. The results are shown in
Table I. Obviously, S-Tracer had no influence on the
network performance, and it increased the server
CPU load by a paltry 0.5%. We also confirmed that
the memory consumption of S-Tracer was limited
within 120KB. From these results, we can conclude
that the performance of S-Tracer is practically suffi-
cient.

5.3 Administrative Workload
In this section we describe the user test for evalu-

ating a workload for server administrators in order to
define a CSP description for their Web application.
This evaluation is performed in cooperation with a
professional security administrator of a security ser-
vice department. He has been engaging in security
administration for three years, and has the necessary
knowledge and usage experience for Linux OS, debug-
ging tools, Web applications and security tools such
as firewalls and network intrusion-detection systems

Table I Results of the performance evalua-
tion.

(NIDS).
First of all, we developed a small Web application

comprising Apache Web server 2.0.27, some static
Web contents and a Perl CGI module. The CGI mod-
ule performs keyword searches for the static Web
contents, but is intentionally embedded a direct OS
command injection vulnerability in its keyword inter-
pretation procedure.

Next we prepared an instruction guide explaining
S-Tracer usage, the CSP syntax and format, and a
standard procedure for CSP definition stipulated as
follows:

① Investigate file I/O’s of the Apache and the CGI
module thoroughly.

② Describe a primary CSP description based on the
results acquired in step ① .

③ Enforce the current CSP description to S-Tracer
and perform a preliminary test to the Web applica-
tion.

④ If you observe incorrect (i.e. false-positive) alerts
by S-Tracer, then add some CSP statements as
necessary to reduce the false-positive alerts into
the current CSP description.

⑤ Repeat steps ③ and ④ until no false-positive alerts
occur.

The testee then defined a CSP description for the
experimental Web application by performing the
above procedure.

Finally the testee was able to define the CSP de-
scription with no false-positive. The procedure lasted
1.5 hours: 1 hour for step ① and 0.5 hours for steps
② -⑤ (steps ③ and ④ were repeated five times). The
CSP description included 22 statements. By review-
ing this description, we confirmed that the descrip-
tion successfully covers normal behavior of the ex-
perimental application. In the post-experiment inter-
view with the testee, he said he estimated an average
workload to define a CSP description for a general
Web application at 3 hours, and concluded that this
workload is permissive in most cases.

6. CONCLUSION

We have presented a behavior-based process con-
finement method using context-sensitive policies
(CSP). CSP can describe the relationship between
event sequences of a server application and
application-dependent specifications.

In order to efficiently match CSP with event se-
quences of the server application, we also developed
Behavior-Tree, a new application-behavior model.

62 NEC J. of Adv. Tech., Winter 2005

The behavior-tree always maintains the event se-
quences including both an access-request event and a
process-execution sequence which are related to each
session of the server application. Based on the model,
we developed an efficient CSP matching algorithm.

We have also developed S-Tracer, a sandbox
mechanism based on this method. This engine can
prevent irregular process behavior that is not autho-
rized in the application-dependent specifications.
Thus, the engine can efficiently protect potentially
vulnerable server applications. We have then applied
S-Tracer to StarDefence, a security solution for pre-
vention of Web contents falsification.

Through the effectiveness evaluation test, we have
confirmed that the engine can prevent falsification,
theft of confidential data, and backdoor creation re-
sulting from code injection attacks against vulnerable
CGI processes. As a result of the performance evalua-
tion and the user test, we have also confirmed that
the kernel space implementation is promising and
that the workload to define a CSP description is per-
missible in conventional administrative operations.

We can conclude that S-Tracer and StarDefence
achieve high practicality and effectiveness in order to
keep Web applications secure. In future, we would

Masayuki NAKAE received his M.E. degree
from Osaka University in 1995. He joined NEC
in 1995 and is now Assistant Manager of the
Internet Systems Research Laboratories. He is
engaged in the research and development of
system security technologies.

Ryuichi OGAWA received his M.S. degree in
Geophysics from Tokyo University in 1983. He
joined NEC in 1983 and is now Principal Re-
searcher of the Internet Systems Research
Laboratories. He is engaged in the research
and development of system security technolo-
gies.

* * * * * * * * * * * * * * *

Received December 1, 2004

like to expand the scope of this technology for more
general server products.

REFERENCES

[1] C. Cowan, C. Pu, et al., “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,”
Proc. 11th USENIX Security Symposium, 2002.

[2] V. Kriansky, D. Bruening, et al., “Secure Execution via
Program Shepherding,” Proc. 11th USENIX Security
Symposium, 2002.

[3] S. Chari, and P. C. Cheng, “BlueBoX: A Policy-driven,
Host-Based Intrusion Detection System,” ACM Transac-
tions on Information and System Security (TISSEC), 6, 2,
2003.

[4] D. Peterson, M. Bishop, et al., “A Flexible Containment
Mechanism for Executing Untrusted Code,” Proc. 11th
USENIX Security Symposium, 2002.

[5] A. Acharya, and M. Raje, et al., “MAPbox: Using Param-
eterized Behavior Classes to Confine Untrusted Applica-
tions,” Proc. 9th USENIX Security Symposium, 2000.

[6] CAN-2002-0656, http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CAN-2002-0656.

[7] Multiple Vendor Common Vulnerability, http://
www.securityfocus.com/bid/2240/info/.

* * * * * * * * * * * * * * *

Yasushi SATO received his B.S degree in To-
kyo Institute of Technology in 1994. He joined
NEC in 1994 and is now Assistant Manager of
the System Platform Software Development
Division. He is engaged in the research and
development of system security solutions.

Sonomi SHIOZAWA received her master’s de-
gree in Science and Engineering at University
of Tsukuba in 1991. She joined NEC in 1991
and is now Assistant Manager of the System
Platform Software Development Division. She
is engaged in the research and development of
system security solutions.

