Disaster Recovery Solution Achieved by EXPRESSCLUSTER
Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.
Index

1. Clustering system and disaster recovery
2. Disaster recovery with remote clustering
3. Configuration of remote clustering
4. Features of remote clustering
5. Case studies
1. Clustering system and disaster recovery
Even highly available clustering system has risk of system disruption in case of widespread disaster

- Clustering system ensures redundancy for wide system components such as hardware, software, and network.
- There is still risk of system disruption in case of widespread disaster such as fire, power outage, earthquake, floods etc.
2. Disaster recovery with remote clustering
2. Disaster recovery with remote clustering

Earthquake, fire disaster, electric outage... ensures business continuity from any disaster

Main site

Backup site

Earthquake

Fire

Virus

Electric outage

Data Mirroring

Application Failover

WAN/VPN
3. Configuration of remote clustering
3. Configuration of remote clustering

- Clustering configured across remote sites
 - Only one communication network is enough between servers
 - Asynchronous mirroring eliminates performance degradation due to network delay
 - Clustering can be configured among different network segments
 - Compresses mirroring data, and saves bandwidth used by transferred data

- Standby server takes over the workload in case of failure / disaster
 - Automatic application level failover
 - Synchronous / Asynchronous data mirroring
3. Configuration of remote clustering

Ensures redundancy even within backup site

1. Local failover within primary site in case of system failure
2. Failover to backup site in case of disaster
3. Ensures further availability by maintaining clustering configuration at backup site
3. Configuration of remote clustering

Scale up existing cluster to remote cluster configuration with low cost

1. Prepare for system failure with shared disk type of clustering at primary site
2. Automatic application level failover in case of disaster
3. Leverage local disk at back up site and achieve low cost disaster recovery
Cost reduction by virtualization of backup site

- Supporting leading hypervisors such as VMware, Hyper-V, KVM, XenServer, etc
- Enables flexible configuration such as physical/virtual mixed configuration, virtual machine only configuration, etc

3. Configuration of remote clustering

WAN/VPN

IP address
Host name
Application
IP address
Host name
Application
Mirror to virtual disk

VM-1 VM-2 VM-3 VM-4

Virtual disk

Hypervisor

Application

IP address
Host name

ExpressCluster

Hybrid Clustering
Configuration (with virtualization)

© NEC Corporation 2015
4. Features of remote clustering
4. Features of remote clustering

① Synchronous mirroring

Always ensures to have the latest data on both servers

Write

① EXPRESSCLUSTER receives write data from the application.
② Data is written to primary server, and transferred to standby server at the same time.
③ Writing is completed when data is written to both servers.

Read

① Read is done from active disk only thus will not be affected by network performance at all.

```mermaid
graph LR
  App[App] -->|①| NIC[Primary NIC] -->|②| Writing to active server -->|③| NIC[Stand-by NIC] -->|①| Writing to stand-by server


App[App] -->|①| NIC[Primary NIC] -->|Reading from active server| NIC[Stand-by NIC]
```
Prevents application performance degradation due to narrow network

* In some products, function corresponding to this function is called semi-synchronous.

In case disk mirroring is done through narrow band network with large communication delay such as remote clustering, asynchronous mode mirroring can prevent degradation of the write performance.

Write flow

1. EXPRESSCLUSTER receives write transaction from application

2. At the same time as writing to disk, the data will also be written to queue

3. Writing transaction completes when writing to the disk and queue is done

4. The queued data will be written to the disk of standby server in background

EXPRESSCLUSTER receives write transaction from application. At the same time as writing to disk, the data will also be written to queue. Writing transaction completes when writing to the disk and queue is done. The queued data will be written to the disk of standby server in background.
Schedule mirroring* enables data synchronization at quiescent point!

* Sometimes this function is called as “Asynchronous Mirroring”

In case synchronization must be done ensuring quiescent point in database etc, schedule mirroring is helps you to automate the synchronization process.

1. During normal operation

Update of data on standby server can be prevented by disabling the data mirroring.

2. During data synchronization

Secure quiescent point, and mirror the updated data.

- Command to take quiescent point of Oracle, SQLServer, and MySQL is supported.

The process can be automated by scheduling as batch job!
4. Features of remote clustering

Easy/rapid recovery by differential copy and used-area-only copy!

After restoration of server damaged in disaster/failure, disk can be resynchronized automatically and brings back to normal clustering condition.

Differential Copy
If disk is not damaged

1. Data can be mirrored in background while application is under operation at backup site.
2. Only blocks which was updated after site failure will be mirrored.

Used-area-only copy
If disk is renewed

1. Data can be mirrored in background while application is under operation at backup site.
2. Only used area in the disk will be mirrored, but not the empty area.

![Diagram](image-url)
Efficient data transfer by compressing the data to be mirrored!

Compress before sending it to network

Extract before writing it to disk

Also acts as an anti-peeping measure since it is compressed

Average 50% reduction in data size as compared to the previous version (Results differ depending on file type)

Helps configuring remote cluster even with narrow network!

* This feature is only valid in asynchronous mirroring mode.
Cluster configuration even among different segment is possible by taking over IP address

Same IP address can be available after failover even between different network segment by leveraging RIP

During failover, EXPRESSCLUSTER updates the routing information
4. Features of remote clustering ⑦ Dynamic DNS integration

Taking over the host name when RIP or VPN is not available

As DNS can be updated dynamically at the timing of failover, user can access to the server without changing any configuration at client side.

1. IP address will change at the time of failover
2. EXPRESSCLUSTER X notifies change of IP address to the dynamic DNS server
3. Acquires current IP address from DNS by unique host name

Makes remote clustering more easy, more convenient!
4. Features of remote clustering

Supports customers’ demand to failover automatically in case of failure, and failover manually in case of disaster

① Automatically failover if failure can be recovered within site. (Manual operation is also available by configuration)
② In case of switching to another site during disaster etc, manual failover can be performed. (Automatic operation is also available by configuration)
4. Features of remote clustering

9 Manual failback

Easy operation to failback to main site

Step-1) Recovers main site. Cluster settings can be easily recovered by push-button from GUI

Step-2) Resynchronization of data to main site by differential copy

Step-3) Failback can be done by a few clicks from GUI

Example: Main site recovery
- Renewal of failed hardware
- Setup of OS / software
- Setup of EXPRESSCLUSTER

4. Features of remote clustering
5. Case studies
EXPRESSCLUSTER has successfully deployed for various business continuity requirements

Major Deployments of EXPRESSCLUSTER DR Configuration

<table>
<thead>
<tr>
<th>Domain</th>
<th>Distance</th>
<th>System</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>1,500km</td>
<td>Database</td>
<td>One-to-one data mirroring</td>
</tr>
<tr>
<td>Service</td>
<td>50km</td>
<td>Database</td>
<td>One-to-one data mirroring</td>
</tr>
<tr>
<td>Accounting</td>
<td>260km</td>
<td>Database</td>
<td>One-to-one data mirroring</td>
</tr>
<tr>
<td>Finance</td>
<td>50km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
<tr>
<td>Finance</td>
<td>80km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>390km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>100m</td>
<td>Database</td>
<td>One-to-one data mirroring</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>5km</td>
<td>Database</td>
<td>Three-to-one data mirroring</td>
</tr>
<tr>
<td>Public Sector</td>
<td>500m</td>
<td>Database</td>
<td>One-to-one data mirroring</td>
</tr>
<tr>
<td>Construction</td>
<td>390km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
<tr>
<td>Finance</td>
<td>100km</td>
<td>Log Collection</td>
<td>1 to 1 mirroring</td>
</tr>
<tr>
<td>Public Sector</td>
<td>350km</td>
<td>Database</td>
<td>1 to 1 mirroring</td>
</tr>
<tr>
<td>Retail</td>
<td>50km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
<tr>
<td>Retail</td>
<td>15km</td>
<td>Custom App</td>
<td>1 to 1 mirroring</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>120km</td>
<td>Database</td>
<td>1 to 1 mirroring</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>120km</td>
<td>Database</td>
<td>Hybrid clustering</td>
</tr>
</tbody>
</table>

- Building -A (Main Site)
- Building -B (Backup Site)
- Data Mirroring
- 100 m

Adopted as business continuity solution against fire disaster
5. Case studies

- Remote cluster of factory between 5km distance (Campus Cluster)
- Consolidated 3 standby servers to 1 physical server on VMware

Cost reduction achieved by consolidating standby servers
EXPRESSCLUSTER was adopted to take over both “data and business application”
Dynamic cost reduction achieved compared to traditional storage-based replication

Key Decision Factor

- Failover can be performed automatically within same site in case of server failure
- In case of disaster, failover can be performed manually
 - User can judge whether to failover or not in case of disaster
 - Failover can be also automatic
- The process of switch over of the system can be pre-defined
 - Prevents manual operation error and realizes immediate recovery
 - Easy failback operation after failover testing

Distance: 50km, NW: 100Mbps, Data update: 40GB /day

Main site

Backup site

Asynchronous data mirroring

Manual Failover

Automatic Failover

Application

Backup site

Main site

Shared storage

Shared storage

Automatic Failover

Manual Failover

Down

App
5. Case studies

- **FT server + EXPRESSCLUSTER was operated before migrating to disaster recovery configuration**
- **At the timing of replacement of FT server, DR configuration was considered**
- **Adopted EXPRESSCLUSTER X which the operation know-how can be also leveraged even in DR configuration**

Distance: 50km

Main site
- Shared storage
- Failover within site

Backup site
- Shared storage
- Failover across sites
- Asynchronous data mirroring

Key Decision Factor

1. Cluster operation of main site remains same as previous
 - Can leverage operation know-how
2. Clustering in combination of FT server and IA server.
 - Realizes disaster recovery in addition to robustness of both hardware and s/w.
3. Can be implemented using existing corporate network
 - Dedicated line is not required

Even different model of servers can be clustered
Disaster recovery (DR) was considered at the timing of BCP preparation.
Adopted data mirroring type cluster which enables minimum start with low cost.
Business operation with two clustered servers under “cross-standby” configuration.

Key Decision Factor

- Any kind of data can be mirrored between clustered servers
- Flexible failover (operation) scenario can be defined

- Incase of application failure, automatic failover will be performed.
- Incase of site down, failover can be performed manually.
Thank You

An Integrated High Availability and Disaster Recovery Solution

For more product information & request for trial license, visit >> http://www.nec.com/expresscluster

For more information, feel free to contact us - info@expresscluster.jp.nec.com