C-based Design Enables Higher Design Efficiency, Lower Area and Higher Performance of Your Chip
(compared to RTL-based design)

Advantages

- Description reduction: 5-30%, simulation speed 100X
- Design man-month reduction (e.g., 80MM → 10MM)
- Design period for HW (blue) and SW (red) are both reduced
- Higher reliability: fast HW-SW co-verification (cycle accurate)

Design Cost Reduction:

- HLS can generate smaller and lower power designs compared to manual RTL designs through maximum resource sharing
- Area and performance optimization for Altera, Xilinx FPGA

Chip Cost Reduction: Smaller Area/Power

- C-based High Level Synthesis and Verification Tool Set for ASIC / FPGA

Application

- Digital Circuits: mobile phone, base station, computer, transmission equipment, STB, digital camera, printer, controllers
- Acceleration of server: Big data (e.g. High Frequency Trading)
- Replacement of real time processing MPU: sensor monitoring and motor control
- Controller: Factory Automation, Medical, Automobile
CyberWorkBench Editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Enterprise</th>
<th>Professional</th>
<th>Standard</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>ASIC / FPGA</td>
<td>FPGA</td>
<td>FPGA</td>
<td>FPGA</td>
</tr>
<tr>
<td>Limitations</td>
<td>none</td>
<td>none</td>
<td>input size/device</td>
<td>input size/device</td>
</tr>
</tbody>
</table>

Tools in CyberWorkBench

“All-in-C” Synthesis

- Any types of modules including control dominated circuits and datapath
- Best-in-class High Level Synthesizer (automatic pipelining, power optimization, powerful parallelism extraction, multiple clock domains, various types of circuits and memories, fixed point, sync/async, etc.)
- Automatic micro-architectural exploration
- Powerful graphical analysis capabilities for synthesized circuits
- Automatic top level structural description generator which connects C-designed modules and RTL legacy modules.
- Supports any ASIC technology and Altera/Xilinx FPGAs
- Includes numerous behavioral IPs (CyberWare) easily retargetable for area or performance

“All-in-C” Verification

- Assertions described in the C source code are automatically translated into RTL assertions for formal verification and RTL simulation
- SystemC source code debugger makes SystemC debug much easier than g++ debugger (e.g. gdb)
- C source code debugger for timing verification directly at the ANSI-C/SystemC source code
- Legacy/RTL, IP conversion into SystemC for integration with newly developed C/SystemC modules
- Testbench generator allows re-usage of untimed C stimuli in cycle-accurate and RTL simulation
- Test pattern can be described directly at the C level. HW-SW co-simulation with CPU vendor’s ISS

IDE with GUI

High Level Synthesis

- Auto Architecture Exploration
- Power Estimation & Optimization
- Synthesized Circuit Analyzer
- Top-level description generator
- Library Generator
- Automatic Pipelining

Static Verification

- C Level Property Checker
- RTL Style Checker
- Bit overflow checker

Dynamic Verification

Verilog, VHDL for logic synthesis

Behavioral Simulation

- ANSI-C bit-accurate sim. model
- SystemC Source Code Debugger
- HW/SW Cosimulation

Cycle Accurate Simulation

- Cycle Accurate model generator in SystemC or Verilog
- SystemC / ANSI-C Source Code Debugger
- HW/SW Cosimulation

C-RTL Dynamic Equivalence check

Testbench generator

FPGA on-chip debugger

For more information

NEC corp.
CyberWorkBench team

E-mail: info@cad.jp.nec.com
URL: http://www.nec.com/cyberworkbench/

© 2016 NEC Corporation 7-1, Shiba 5-chome, Minato-ku, Tokyo, 108-8001, Japan

Cat.No. B01-16110001E

November/2016