NEC’s Submarine Cable System

December 5, 2008
NEC Corporation
Broadband Network Operations Unit
Executive General Manager
Masamichi Imai
1. Outline of Submarine Cable Systems
1-1. The History of Submarine Cables

1850: First Telegraph cable at Dover Strait
1858: First Trans-Atlantic Telegraph Cable
 (1876: Graham Bell invents the Telephone)
1906: Submarine Cable Tokyo-Guam
1956: First Trans-Atlantic Coaxial Cable
 (1963: Satellite Communications between Japan and US begins)
1964: First Trans-Pacific Coaxial Cable
1988: First Trans-Oceanic Optical Cable (1 Gb/s)
1999: Trans-Oceanic Optical Cable (640 Gb/s)
2001: Trans-Oceanic Optical Cable (1.28~Tb/s)
1-2. Summary of Submarine Cable Systems

Max. Transmission Distance 12,000~13,000km

Station A

- Avg 1m-3m burial (Max. 15m)
- Burial up to sea depth of 1500m

Station B

- Max. Sea Depth 8,000m
 (at 8000m below sea level, water pressure is equivalent to holding a car on one's thumb.)

Cables are laid in deep trenches

Repeater
Placed at 40Km~100km intervals

Japan to US West Coast is approx. 8,000km
At least 80~100 repeaters are required.
1-3. Components of a Submarine Cable System

Dry Side
- Line Terminal Equipment
- Supervisory System
 - Overall System Monitoring
 - Repeater Performance Monitoring

Wet Side
- Submarine Cables (incl. fiber.)
- Submarine Repeater
- Power Feeding Equipment
- Network Protection Equipment (SDH system)
- Installation Cableship
1-4. Technical Trends

Coaxial

Fiber Optics

Optical Amplifier System

Optical Regenerator System 1.3 / 1.55 μm

Coaxial Repeater System

40G DWDM
10G DWDM
2.5G DWDM
5G Single
1-5. Transmission Capability

- **Coaxial Repeaters**
- **Optical Regenerator**
- **Optical Amplifier**

40Gb/s WDM System Based
- 40G x 96
- 10G x 128
- 10G x 64
- 10G x 32
- 10G x 16

10Gb/s WDM System Based
- 10G x 96
- 10G x 64
- 10G x 32
- 10G x 16

2.5Gb/s WDM System Based
- 2.5G x 16
- 2.5G x 8
- 2.5G x 4

1.55μm
- 1.55μm

1.3μm
- 1.3μm

5th Generation WDM
- 5G
- 10G x 128
- 10G x 64
- 10G x 32
- 10G x 16

3rd Generation Single Wavelength
- 10G x 192
- 10G x 96
- 10G x 64
- 10G x 32
- 10G x 16

2nd Generation
- 2.5G x 8
- 2.5G x 4

1st Generation
- 1.44G
- 560M / 622M
- 420M
- 140M/280M (TPC3)
1-6. Latest Transmission Capacity

The Maximum Transmission Capacity for the latest Submarine Cable System, using the latest Optical Transmission technologies, is 10.24 Terabits/sec.

◆ So, how fast is 10.24 Tbps?

1 Cable can carry **Approx. 160Mil. Telephone Circuits** simultaneously
or
1 Cable can send **Approx. 272 DVD Disks** between continents within 1 second.

\[
\begin{align*}
10.24 \text{ Tbps} &= 10 \text{Gbps} \times 128 \text{WDM} \times 8 \text{fiber pairs} \\
\text{a) 10Gbps:} & \quad 1 \text{ wavelength (color) can carry 10Gbps worth of data} \\
\text{b) 128WDM:} & \quad 1 \text{ fiber can carry wavelengths (colors) up to 128 colors} \\
\text{c) 8fiber pairs:} & \quad 1 \text{ Submarine Cable can accommodate up to 8 fiber pairs.}
\end{align*}
\]
1-7. Comparison between Submarine Cable and Satellite Communications

1. Enables Highly Reliable and Affordable Broadband Communications
 1) Suitable for Communications
 2) Adaptable to various Applications
 - HD Digital Television
 - High Speed Internet Connection
 - High Speed Mobile Communications
 - High Speed Data Transmission, etc.

2. Easily Upgradable plus Long Lifespan
 1) Upgrade only when necessary
 - Upgradable with minimum investment
 2) 25 year Design Life

Satellite Communications
- Latency: 250ms
- Design Life: 10~15 years
- Capacity: 48,000ch

Optical Subsea Communication
- Latency: 50ms
- Design Life: 25 years
- Capacity: 80,000,000ch
 (10Gbits, 128WDM, 4fp)

Now and Then
In 1995:
 Subsea 50:50 Satellite
Today (2008):
 Subsea 97:3 Satellite
2. Features of Submarine Cable Systems
2-1. Submarine Cable Projects

Features

- Infrastructure for Int’l Traffic
 (Construction Period 10~18 Months)
- Large Capacity Transmission
- System Design Life 25 years

Project Formation

- **NEC**
 - System Design
 - Subsea Repeaters
 - Line Terminals
 - Power Feed
 - Integration
 - Project Management

- **Cable**
 - OCC
 - NTT・WEM
 - KCS
 - KTS
 - ACPL
 - others

- **Marine**
2-2. Flow of a Typical Project

- RFP Release
- Create Proposal
- Submit Proposal
- Select Vendor
- PJ Commence
- Down Payment
- Contract Sign
- Provisional Acceptance (Commercial)
- End of Warranty

- Project Duration: 6~8 years
 (from RFP to System Completion: 1~3 years)

- 2wks~4wks
- 1Mo~6Mo
- 2wks~4wks
- 1yr-2yr
- 2yr~5yrs
2-3. Construction of New Cable vs. Upgrade

Construction of a New Cable ≒ Like building a 10 lane expressway (but use only 1 lane)

Capacity Upgrade ≒ Like opening one lane at a time. No New Construction.

- Constructing a New Cable is like constructing a 10 lane expressway but using only 1 lane at the beginning. If traffic increases, more lanes will be opened.
- A 10 lane expressway costs more to build than a 1 lane expressway, but is less than building ten 1 lane expressways. Initial investment works out to be high, but are being build to cope with future demands.
3. Submarine Cable Systems Market
3-1. Global Trends

Demands were high during 1999-2001, but a 20 year trend seems stable at US$2,100M～2,500M.

2007 saw demands coming back to mid 90’s level. Expect moderate growth for coming years.

CAGR of Upgrades is approx. 100.2%.

Expect high demands in Asia-Pacific, Indian Ocean, Middle East and Africa.
4. NEC’s Strategy towards Submarine Cable Systems
4-1. NEC’s Strategy for Submarine Cable Systems

1. Focus on the Asia-Pacific region (Maintain regional strength)
 • Produce High Quality products from Ohtsuki plant (25 year warranty)
 • Focus marketing resources to Asia-Pacific

2. Maintain Stable Growth
 • Total Supply from Terminal Equipments to Repeaters & Cable
 Stable Supply made possible with acquisition of OCC
 • Maintaining Profitability while Minimizing Risk
 • Avoid High-risk / High-return projects, and maintain stable growth

3. Spin-Off ~ Ocean Bottom Seismograph Systems
 • Sole supplier of Ocean Bottom Seismograph Systems in Japan
 • Detect “P-wave” from earthquakes for the Meteorological Agency’s “Earthquake Early Warning System”
4-2. Status of the Submarine Industry (Top 3 suppliers)

<table>
<thead>
<tr>
<th></th>
<th>Tyco</th>
<th>Alcatel</th>
<th>NEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Integration</td>
<td>![Tyco Logo]</td>
<td>![Alcatel Logo]</td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td>Manufacture of</td>
<td>Tyco</td>
<td>Alcatel</td>
<td>NEC</td>
</tr>
<tr>
<td>Submarine Line Terminal</td>
<td>![Tyco Logo]</td>
<td>![Alcatel Logo]</td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacture of</td>
<td>Tyco</td>
<td>Alcatel</td>
<td>NEC</td>
</tr>
<tr>
<td>Submarine Repeaters</td>
<td>![Tyco Logo]</td>
<td>![Alcatel Logo]</td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td>Manufacture of</td>
<td>Tyco</td>
<td></td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td>Submarine Cables</td>
<td>![Tyco Logo]</td>
<td>![Alcatel Logo]</td>
<td></td>
</tr>
<tr>
<td>Marine Work &</td>
<td>Tyco</td>
<td>![Alcatel Logo]</td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td>Maintenance</td>
<td>![Tyco Logo]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cable Install Company</td>
<td>![Alcatel Logo]</td>
<td>![NEC Logo]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Top 2 Suppliers can manufacture, integrate and implement, and provide Maintenance Services with own resources within.
- By acquiring OCC, NEC is now able to provide services nearly equal to the top 2 suppliers.
19

NEC Corporation and Sumitomo Electric Industries acquired OCC Holdings from the Longreach Group.

4-3. Structure of OCC Acquisition

Acquired interest of OCC Holdings

(Before)

Longreac Group

(100%)

OCC Holdings

(100%)

OCC

(After July 15, 2008)

NEC

Sumitomo Electric Industries

Approx. 75%

Approx. 25%

OCC Holdings

(100%)

OCC

NEC Corporation and Sumitomo Electric Industries acquired OCC Holdings from the Longreac Group.
4-4. Company Overview for OCC

| Operations | Subsea Cable: Design, Manufacture and Sales of Communication purpose Submarine Cable and Surveillance cables.
| | Terrestrial Cable: Manufacture and Sales of Communication purpose Terrestrial Cables. |
| Offices | Head Office: Yokohama, Japan
| | Plants: Submarine Cable (City of Kita-Kyushu)
	Terrestrial Cable (Kaminokawa Township)
Founded	June 1935
Capital	2.255 Billion Yen (as of March 2008)
Sales	17.46 Billion Yen (for year ending March 2008)
Director	Yoshihisa Okada, President and CEO
Employees	Approx. 221 pax. (not including directors and temp.staff)
Shareholders	OCC Holdings (100%)
4-5. Ocean Bottom Seismograph System

- Constantly transmits data gathered from the Seismograph through Optical Fiber Cable to the Terrestrial Station.
- Technology base: NEC’s Submarine Cable System and Subsea Equipment (Features)
 - Enables real-time monitoring of seismic activities 24/7
 - Enables Tsunami readings off the coast before reaching the shores.
 - Enables Reliable and Stable Monitoring
4-6. Seismograph System of Omaezaki

Features
- Installed as part of strengthening the observation system of Tokai area
- NEC was selected as supplier for this project on the followed account:
 1. In 1976, NEC supplied the first Ocean Bottom Seismograph System to JMA
 2. NEC is the only supplier of Ocean Bottom Seismograph System and has a supply record of 7 systems around Japan

Future outlook
- Upgrade project of Hiratsuka, and New projects in Sanriku and Kii Peninsula

Project Outline
- Customer: JMA
- Installation completed for the first 2 year phase (Project Duration: total 4 years)
- Scope of work: Supplying Ocean Bottom Seismograph/Tsunami gauge

Seismograph System around Japan

Note:
- Optical Fiber
- Coaxial

JMA: Japan Meteorological Agency
ERI: Earthquake Research Institute, University of Tokyo
NIED: National Research Institute for Earth science and Disaster Prevention
JAMSTEC: Japan Agency for Marine-Earth Science and Technology
Empowered by Innovation

NEC